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Abstract——Interleukins are considered to be key
players in the chronic vascular inflammatory re-
sponse that is typical of atherosclerosis. Thus, the
expression of proinflammatory interleukins and
their receptors has been demonstrated in atheroma-
tous tissue, and the serum levels of several of these
cytokines have been found to be positively corre-
lated with (coronary) arterial disease and its
sequelae. In vitro studies have confirmed the in-
volvement of various interleukins in pro-atherogenic
processes, such as the up-regulation of adhesion
molecules on endothelial cells, the activation of mac-
rophages, and smooth muscle cell proliferation. Fur-
thermore, studies in mice deficient or transgenic for
specific interleukins have demonstrated that,
whereas some interleukins are indeed intrinsically
pro-atherogenic, others may have anti-atherogenic

qualities. As the roles of individual interleukins in
atherosclerosis are being uncovered, novel anti-
atherogenic therapies, aimed at the modulation of
interleukin function, are being explored. Several ap-
proaches have produced promising results in this
respect, including the transfer of anti-inflammatory
interleukins and the administration of decoys and
antibodies directed against proinflammatory inter-
leukins. The chronic nature of the disease and the
generally pleiotropic effects of interleukins, how-
ever, will demand high specificity of action and/or
effective targeting to prevent the emergence of ad-
verse side effects with such treatments. This may
prove to be the real challenge for the development
of interleukin-based anti-atherosclerotic therapies,
once the mediators and their targets have been de-
lineated.
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I. Introduction

Atherosclerosis remains, despite a recent decline, the
most common cause of death in the Western world. The
disease course of atherosclerosis is characterized by its
chronicity, and progression in its initial stages is partic-
ularly insidious. Chronic inflammation is the patholog-
ical hallmark of atherosclerosis (Ross, 1986, 1993a,
1999), and inflammatory processes are instrumental in
all stages of this disease. Even prior to the development
of detectable intimal lesions, the expression pattern of
the endothelium has been shown to be inflammatory in
nature, conforming to the response-to-injury hypothesis
as first postulated by the late Russell Ross (Ross and
Glomset, 1973). Thus, in lesion-prone sites of the arte-
rial tree, the endothelial expression of adhesion mole-
cules is up-regulated, reflecting endothelial dysfunction
secondary to unfavorable hemorheology (Nakashima et
al., 1998) and/or hypercholesterolemia (Rosenfeld, 1991;
Li et al., 1993; Sakai et al., 1997; Nakashima et al.,
1998). In turn, this leads to the adhesion, extravasation,
and intimal accumulation of circulating leukocytes
(Nageh et al., 1997; Gerszten et al., 1998; Nakashima et
al., 1998; Ramos et al., 1999; Dong et al., 2000), and thus
to the development of the earliest detectable lesion—the
fatty streak—which consists solely of lipid-laden macro-
phages and T lymphocytes (Stary et al., 1994). These cell
types are also present in more advanced plaques, in
addition to smooth muscle cells and extracellular lipid
and matrix deposits (Stary et al., 1994, 1995). The cel-
lular constituents of the atherosclerotic lesion are
thought to participate actively in the propagation of
inflammation and, eventually, plaque destabilization
(Ross, 1999; Sukhova et al., 1999). As well as contribut-
ing to the bulk of the lesion, plaque cells are involved in
the production and degradation of extracellular matrix
and contribute toward the formation of a necrotic lesion
core by the elaboration of toxic mediators. These cellular
functions are partly autonomous but to a large extent
subject to autocrine and paracrine control mechanisms.
A plethora of mediators has been shown to be involved in
intercellular signaling in atheromatous tissue, including
small molecules such as nitric oxide (Ignarro et al., 1999;
Li and Forstermann, 2000), lipid mediators such as ei-
cosanoids and sterols (Hajjar and Pomerantz, 1992; Ed-
wards and Ericsson, 1999; Schnaper et al., 2000), and
polypeptides such as cytokines (Frostegard et al., 1999;
Meager, 1999).

Whereas fatty streaks are now known to develop even
in utero under the influence of maternal hypercholester-
olemia (Napoli et al., 1997), plaques rarely give rise to
symptoms before the sixth or seventh decade of life. If
primary prevention is to be the cardinal aim, the pro-
tracted nature of lesion development will necessitate a
therapeutic strategy with a comparably prolonged dura-
tion of effectivity. In conjunction with the as yet perfunc-
tory levels of prognostic accuracy for the identification of

patients at risk of symptomatic atherosclerosis, this
poses stringent demands with respect to the tolerability
of any preventive intervention, including the use of im-
munomodulatory therapies.

The rate of atherogenesis largely depends on the level
of exposure to major risk factors, including a positive
family history, hypercholesterolemia, smoking, diabetes
mellitus, and hypertension. Although the avoidance of
risk factors undoubtedly constitutes the most rewarding
approach to the prevention of atherosclerosis, it has thus
far been frustrated by inadequate patient compliance
and the influence of genetic factors in determining an
individual’s predisposition to atherosclerosis. This has
led to the introduction of a variety of pharmacological
interventions, including the widespread use of an ex-
tremely effective class of lipid-lowering drugs: the HMG-
CoA reductase inhibitors, or so-called statins (Braun-
stein et al., 2001). Despite recent concerns regarding the
induction of rhabdomyolysis, a rare and potentially le-
thal side effect of statin usage, these drugs continue to
be the mainstay of most cholesterol-lowering regimens.
In several clinical prevention trials (e.g., CARE; Ridker
et al., 1998), statins have also been found to exert addi-
tional, lipid-independent, anti-inflammatory effects.
These may contribute significantly to their anti-athero-
genic properties, and this has indeed been corroborated
in recent animal studies (Williams et al., 1998). Indeed,
immunomodulation could be an attractive paradigm for
the development of therapeutic alternatives to statins in
atherosclerosis prevention. This may be of particular
benefit to those whose lipid levels are (partially) unre-
sponsive to statin therapy; as in a substantial number of
patients in the U.S. National Cholesterol Education Pro-
gram, LDL1 cholesterol levels cannot be attained by
statin monotherapy alone (Brown et al., 1998).

To enable rational drug design aimed at immuno-
modulation in atherosclerosis, the pivotal inflammatory
processes involved in this disease need to be delineated.
In this regard, extensive efforts have been devoted to
outlining the involvement of cytokines, because these

1 Abbreviations: LDL, low density lipoprotein; TNF, tumor necro-
sis factor; TNFR, TNF receptor; IL, interleukin; IFN�, interferon �;
Th, T helper cell; MCP-1, monocyte chemoattractant protein-1; RAN-
TES, regulated on activation normal T cell expressed and secreted;
MIP-1, macrophage inflammatory protein-1; ICE, IL-1�-converting
enzyme; MAPK, mitogen-activated protein kinase; NF-�B, nuclear
factor-�B; AP-1, activating protein-1; ICAM-1, intercellular adhesion
molecule 1; VCAM-1, vascular cell adhesion molecule-1; SMC,
smooth muscle cell; MMP, matrix metalloproteinase; SOCS, sup-
pressor of cytokine signaling; LPS, lipopolysaccharide; GM-CSF,
granulocyte-macrophage colony-stimulating factor; G-CSF, granulo-
cyte-colony-stimulating factor; Jak, Janus kinase; STAT, signal
transducer and activator of transcription; ODN, oligodeoxynucle-
otide; PKC, protein kinase C; PDGF, platelet-derived growth factor;
TGF�, transforming growth factor �; AAV, adeno-associated virus;
IKK, I�B kinase; iNOS, inducible nitric-oxide synthase; WIN 67694,
Z-Val-Ala-Asp-CH2O(CO)[2,6-CI2)]Ph; SB 203580, 4-(4-fluorophe-
nyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole; VE 13,045,
carbobenzyloxy-Val-Ala-Asp(O-et)-CH2O-dichlorobenzoate.
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cell-regulatory proteins are known to be key players in
the initiation and control of inflammation in general.
The term “cytokine” was first coined in the 1970s and
encompasses a large number of (glyco)proteins involved
in cell-to-cell signaling. Cytokines are conventionally
classified by assignment to one of six families: interleu-
kins, the tumor necrosis factor family, interferons, colo-
ny-stimulating factors, growth factors, and chemokines
(Henderson and Higgs, 2000). Considerable overlap be-
tween these families exists, however, and alternative
methods of subdivision have been suggested. Depending
on the aim of classification it may be preferable to dis-
tinguish cytokines with an essentially proinflammatory
mode of action [including tumor necrosis factor (TNF),
interleukin-12 (IL-12), IL-18, and interferon � (IFN�)]
from those with largely anti-inflammatory properties
(including IL-4, IL-10, IL-13, and the endogenous IL-1
receptor antagonist, IL-1ra) or T helper cell type I (Th1;
including IL-2, IFN�, and TNF) from T helper cell type
II (Th2; including IL-3, IL-4, IL-5, IL-6, IL-10, and IL-
13) cytokines. Alternatively, it may be desirable to iden-
tify cytokines according to their major function, such as
those effecting chemoattraction [chemokines, including
monocyte chemoattractant protein-1 (MCP-1), RAN-
TES, macrophage inflammatory protein-1 (MIP-1), IL-8,
and IL-16] or on the basis of receptor sequence homology
(e.g., those employing the gp130 signal transduction pro-
tein, such as IL-6, IL-11, IL-12, oncostatin M, and car-
diotrophin-1). Nonetheless, a substantial degree of
pleiotropism in cytokine effector functions makes most
of these subdivisions somewhat arbitrary.

Members of each conventional cytokine family have
been found to be involved in atherogenesis, and all cell
types present in the atherosclerotic plaque are capable
of producing and responding to cytokine mediators. It is
conceivable, therefore, that intervention in cytokine sig-
naling could provide effective prevention and/or treat-
ment of atherosclerosis, and proof-of-principle data to
this effect have been obtained in a variety of in vitro and
in vivo studies, although this has not yet yielded clini-
cally applicable protocols. In this review, we shall focus
mainly on interleukins in our aim to outline the results
that have been achieved to date in delineating the
pathophysiological role and the therapeutic potential
of cytokines in atherosclerosis. In addition, we shall
discuss the potential of the modulation of cytokine
activity as a therapeutic approach to the primary and
secondary prevention of atherosclerosis. Following an
overview of the roles ascribed to a variety of interleu-
kins in the pathogenesis of atherosclerosis, we shall
describe recent progress in this field and perceived
future opportunities.

II. Interleukin Families in Atherosclerosis

By definition, interleukins are produced mainly by
leukocytes and exert their effects mainly on leukocytes.
Endothelial cells and smooth muscle cells, however, also

express a variety of interleukins and/or their respective
receptors, and their effects in atherogenesis are there-
fore by no means restricted to macrophages and T cells.
Thus far, more than 30 major members of the interleu-
kin family have been identified, and the majority of
these have been shown to play a role in atherogenesis.
As applies to cytokines in general, it is possible to sub-
divide the interleukins into families according to the
homology of their amino acid sequences or the homology
of the receptor complexes to which they bind (Fig. 1). Of
these subgroups, the gp130 receptor family comprises
principally pro-atherogenic interleukins, but most other
families have both anti- and pro-atherogenic members
(e.g., IL-1 family, IL-2 family, and �c receptor family). It
has not proved feasible to pinpoint an interleukin that
acts as the cardinal culprit in the atherosclerotic pro-
cess. On the contrary, it seems rather more likely that
the delicate balance between pro- and anti-inflamma-
tory signals that generally serves to keep inflammation
in check, goes awry in atherosclerosis, leading to a self-
perpetuating mechanism of lesion formation (Ross,
1993b; Tedgui and Mallat, 2001). Considering the exten-
sive interplay of soluble mediators in the atherosclerotic
plaque, however, it may prove possible to devise an
anti-atherosclerotic therapy aimed at modifying the ef-
fect of a single interleukin, provided that due attention
is paid to the mechanisms of redundancy, which have
been shown to exist in cytokine signaling. In doing so,
candidate interleukins cannot be identified solely by
virtue of a demonstrated systemic or local modulation of
their expression in the course of atherogenesis. On the
contrary, it is of paramount importance to determine
whether cytokine responses that have been observed in
relation to the development of atherosclerosis are com-
pensatory to, contributory to, or merely associated with
this disease. Making this distinction will require well
designed intervention studies in animal models, in
which the effect of attenuation or administration of a
particular interleukin can be evaluated. The currently
favored approach entails the up- or down-regulation of
interleukin expression in atherosclerosis-prone mouse
strains by means of gene insertion (“transgenics”) or
gene deletion (“knockouts”), respectively. Administra-
tion of an interleukin or its ablation by specific antibod-
ies/antagonists, however, can also provide valuable data
regarding its role in atherogenesis. When pertinent, the
results of such studies will be discussed in the next
section.

Since the effects exerted by cytokines may differ sig-
nificantly depending on their local environment, it will
also be necessary to distinguish between the role of
systemic and local variations in cytokine levels. This
type of information could in the future be derived from
cell- or organ-specific gene overexpression through the
use of specific promoters and gene deletion by means of
the cre-lox system (Perkins, 2002) or by comparison of
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the effects of local and systemic administration of cyto-
kines.

A. Interleukin-1

The IL-1 family comprises four proteins that share
considerable sequence homology and contain a �-pleated
sheet structure (Dinarello, 1997): IL-1�, IL-1�, IL-1 re-
ceptor antagonist (IL-1Ra), and IL-18 (also known as
IFN�-inducing factor). Release of mature IL-1� requires
extracellular calpain-mediated cleavage of a pro-IL-1�,
whereas mature IL-1� is derived proteolytically from
pro-IL-1� by intracellular IL-1�-converting enzyme
(ICE or caspase-1) activity. Upon binding of IL-1� or
IL-1� to the IL-1 receptor type I (IL-1RI), IL-1R acces-
sory protein (IL-1RIAcP) is recruited by the receptor
complex, and intracellular signal transduction is trig-
gered through a p38 mitogen-activated protein kinase
(MAPK)-activated phosphorylation cascade. Due to ex-
tensive signal amplification, minute amounts of IL-1 can
have considerable biological activity, and as little as 1
ng/kg intravenous IL-1� causes symptoms in humans.
The signaling cascade culminates in the nuclear trans-
location of the transcription factors nuclear factor kappa
B (NF-�B) and activating protein-1 (AP-1) and the en-
suing transcription of a variety of proinflammatory
genes, including autocrine amplification of IL-1 produc-
tion (Suzuki et al., 1989). In addition to the IL-1RI, IL-1
may also bind to the so-called type II interleukin-1 re-
ceptor, the expression of which appears to be regulated

by IL-4 (Colotta et al., 1993b). Binding of IL-1 to this
receptor does not result in cellular activation, and IL-
1RII is therefore presumed to act as a decoy that nega-
tively regulates IL-1 activity.

A further member of the IL-1 cytokine family, IFN�-
inducing factor, has been termed IL-18, on the basis of
its pleiotropic Th1-inducing effects (Ushio et al., 1996).
It has been assigned to the IL-1 family on the grounds of
sequence homology (26% with IL-1�) and similarity of
the IL-18 receptor to IL-1R (Torigoe et al., 1997; Din-
arello, 1999). Like IL-1�, IL-18 is dependent on ICE for
proteolytic processing, and on nuclear translocation of
NF-�B for transcriptional activation.

Owing to its proinflammatory effects on endothelial
cells (Jirik et al., 1989; Loppnow and Libby, 1989a,b;
Sironi et al., 1989; Suzuki et al., 1989; Sica et al., 1990b;
Bochner et al., 1991; Clinton et al., 1992; Collins et al.,
1995; Garcia et al., 2000), smooth muscle cells (Loppnow
and Libby, 1989a, 1990; Wang et al., 1991; Clinton et al.,
1992; Braun et al., 1995; Stanford et al., 2000), and
macrophages (Sica et al., 1990b), and due to its produc-
tion by all of these cell types in atherosclerotic lesions
(Moyer et al., 1991; Tipping and Hancock, 1993; Galea et
al., 1996), IL-1 was one of the first cytokines to be
considered instrumental in the propagation of vessel
wall inflammation in atherosclerosis. It is thought to
facilitate early lesion formation by increasing leukocyte
adhesion to endothelial cells (Bevilacqua et al., 1985;
Wang et al., 1995) and mediating leukocyte transmigra-

FIG 1. Schematic representation of the receptor specificity and mechanism of action of interleukin families thought to be involved in atherogenesis.
Most receptors have been found to consist of heterodimeric complexes, frequently incorporating an interleukin-specific chain in addition to a common
chain that is shared by the interleukin family members (including IL-2R�, �c, and gp130). Receptor activation initiates intracellular phosphorylation
cascades that are mediated by kinases (including p38 MAPK, c-Jun N-terminal kinase, and JAKs), resulting in the activation and/or nuclear
translocation of transcription factors (including AP-1, STATs, NF-�B). Binding of these factors to DNA consensus sequences, in conjunction with the
required cofactors, effects the expression of specific patterns of pro- and/or anti-inflammatory mediators.
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tion (Moser et al., 1989; Furie anf McHugh, 1989). Sub-
sequently, locally produced IL-1 may serve to maintain
an inflammatory milieu by autocrine and paracrine
stimulation of cytokine (Jirik et al., 1989; Loppnow and
Libby, 1989a,b, 1990, 1992; Sironi et al., 1989; Sica et
al., 1990a,b; Wang et al., 1991; Clinton et al., 1992; Li et
al., 1995; Taki et al., 1999; Garcia et al., 2000; Stanford
et al., 2000) and adhesion molecule expression (Osborn
et al., 1989; Bochner et al., 1991; Braun et al., 1995;
Collins et al., 1995). In the advanced plaque, IL-1-in-
duced up-regulation of matrix metalloproteinases may
destabilize the proteinaceous scaffold of the cap and
thereby have a hand in plaque rupture (Galis et al.,
1995; Libby et al., 1995); this hypothesis is corroborated
clinically by the fact that a particular IL-1� gene poly-
morphism has been found to be associated with myocar-
dial infarction in chlamydia pneumoniae seropositive
patients (Momiyama et al., 2001), and that pericardial
fluid levels of IL-1� are raised in patients with unstable
angina pectoris (Oyama et al., 2001).

Because the IL-18 signal transduction cascade is sim-
ilar to that activated by IL-1, it is perhaps unsurprising
that IL-18 has also been found to up-regulate the ex-
pression of intercellular adhesion molecule 1 (ICAM-1)
and cytokines by monocytes, including IL-1�, IL-6, and
IL-8 (Dinarello, 1999), and the production of vascular
cell adhesion molecule-1 (VCAM-1) by endothelial cells
(Vidal-Vanaclocha et al., 2000). It is, therefore, entirely
conceivable that IL-18 may have pro-atherogenic prop-
erties, and Mallat et al. (2001a) have indeed demon-
strated IL-18 in atherosclerotic plaques in human ca-
rotids, which is primarily localized to macrophages.
They found the corresponding receptor, IL-18R, to be
expressed on endothelial cells and macrophages and
barely present on SMCs. These findings have subse-
quently been confirmed histologically and in vitro by
Gerdes et al. (2002), who also demonstrated the func-
tionality of the IL-18 receptor on these cells through
IL-18-mediated induction of pro-atherogenic factors, in-
cluding IL-6, IL-8, ICAM-1, and matrix metalloprotein-
ases. In addition, the serum level of IL-18 has recently
been identified as a strong predictor of cardiovascular
death in stable and unstable angina (Blankenberg et al.,
2002). The pro-atherogenic effects of IL-18 are thought
to be mediated by IFN�, since the induction of athero-
sclerosis by exogenous IL-18 is abrogated by IFN� defi-
ciency in apolipoprotein E knockout (apoE�/�) mice
(Whitman et al., 2002). A role for IL-18 in plaque desta-
bilization was suggested by the up-regulation of IL-18
mRNA levels in symptomatic and ulcerative atheroscle-
rotic plaques (Mallat et al., 2001a).

In comparison with the proinflammatory reprobates
of the IL-1 family, IL-1ra appears positively angelic.
IL-1ra displays affinity for the IL-1R, but it does not
induce a cellular response; it is therefore believed to be
an endogenous inhibitor of IL-1 signaling (Dinarello,
1997). IL-1ra is produced by monocytes (Arend et al.,

1990), macrophages (Janson et al., 1991), and smooth
muscle cells (Beasley et al., 1995). Recombinant intra-
cellular IL-1ra has been shown to counteract the IL-1-
induced production of IL-6, IL-8, and monocyte chemo-
tactic protein by human endothelial cells (Bertini et al.,
1992), and to inhibit smooth muscle cell proliferation
(Porreca et al., 1993). Moreover, vascular inflammation
is the major phenotypic characteristic of IL-1ra-deficient
mice (Nicklin et al., 2000), whereas atherogenesis is
reduced in IL-1ra transgenic mice on a high fat diet
(Devlin et al., 2002), and fatty streak formation is re-
duced in apoE�/� mice by IL-1ra administration (El-
hage et al., 1998). Il-1ra has been found to be present in
carotid atherosclerotic plaques (Gottsater et al., 2002),
and the relevance of IL-1ra to human atherosclerosis is
underscored by the fact that certain IL-1ra alleles are
associated with coronary artery disease (Francis et al.,
1999) and restenosis (Kastrati et al., 2000; Francis et al.,
2001).

B. Interleukin-2

This family of cytokines encompasses a group of inter-
leukins which share a common receptor subunit, the
“common � chain” (�c chain), which acts in unison with
a subtype specific � chain to initiate the signaling cas-
cade. As the common receptor subunit was initially dis-
covered in relation to IL-2, it has also been termed the
“IL-2 receptor � chain” (Takeshita et al., 1990), and the
group of cytokines that interact with this receptor has
consequently been termed the “IL-2 family” (Leonard
and Lin, 2000). The members of this interleukin family
are primarily involved in T cell development and activa-
tion, and mutations of the �c chain cause X-linked se-
vere combined immunodeficiency in humans (Noguchi et
al., 1993b) and lead to thymic hypoplasia in mice (Cao et
al., 1995).

In addition to IL-2, the family includes IL-4 (Russell et
al., 1993), IL-7 (Noguchi et al., 1993a), IL-9 (Russell et
al., 1994), IL-15 (Giri et al., 1994a), and IL-21 (Vossh-
enrich and Di Santo, 2001). All members interact with
receptor complexes consisting of an interleukin-specific
� chain and the common �c chain (Fig. 1). Moreover, the
IL-4 � chain is also a component of the IL-13 receptor
complex (Zurawski et al., 1993), and for purposes of
classification, we shall include IL-13 in this interleukin
family. A substantial degree of functional redundancy is
extolled by the IL-2 family members, which is compre-
hensible in view of considerable overlap in their signal-
ing pathways. Thus, Janus kinase 1 (Jak1) and Jak3
have been found to be activated by the subtype-specific
chains and the constant �c chain, respectively (Miyazaki
et al., 1994; Russell et al., 1994; Leonard and Lin, 2000),
which ultimately cascades into the activation of tran-
scription by the common downstream effector molecules
“signal transducer and activator of transcription” 5a
(Stat5a), Stat5b, and Stat3 (Lin et al., 1995; Lin and
Leonard, 2000). IL-4 and IL-13 are somewhat distinct in
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activating Jak2 and Stat-6 via a �c chain-independent
pathway (Palmer Crocker et al., 1996).

IL-2 (Arbustini et al., 1991; Frostegard et al., 1999)
and the IL-2R receptor (Kishikawa et al., 1993) are
expressed in atheromatous tissue, but a direct causal
role for IL-2 in atherogenesis remains to be proven.
Nonetheless, serum IL-2 levels have been found to be
elevated in ischemic heart disease (Mazzone et al., 1999)
and especially unstable angina pectoris (Mizia-Stec et
al., 2002), and the risk of acute myocardial infarction is
increased following IL-2 treatment for cancer (Kragel et
al., 1990). A possible explanation for the presumed pro-
atherogenic effect of IL-2 may lie in its ability to induce
a T helper cell shift toward a Th1 phenotype. T cells
have been shown to be present in atherosclerotic lesions
(Hansson et al., 1988), and Th1 cells, in particular, are
believed to actively promote atherogenesis (de Boer et
al., 1999; Frostegard et al., 1999; Huber et al., 2001;
Laurat et al., 2001; Song et al., 2001). In its capacity as
an autocrine stimulator of Th1 cell differentiation and
proliferation (Kurt-Jones et al., 1987; Harel-Bellan et
al., 1988), IL-2 may promote the expansion and activa-
tion of this T cell subset, and, consequently, plaque
development.

Conversely, IL-4 is known to promote Th2-type re-
sponses (partly by autocrine activation) and to exert
immunosuppressive effects on macrophages, including
the suppression of proinflammatory cytokine production
and the stimulation of IL-1ra elaboration (Paul, 1991).
This cytokine is therefore considered to be potentially
anti-atherogenic. The highly pleiotropic effects of IL-4,
however, reserve a rather more complicated role for IL-4
in atherosclerosis. Thus, whereas mice deficient in
Stat6, which is one of the mediators activated by IL-4,
develop larger atherosclerotic lesions than their wild-
type counterparts (Huber et al., 2001), IL-4 deficient
mice do not display increased susceptibility to diet-in-
duced atherosclerosis (George et al., 2000a). They have
even been found to be relatively resistant to the accel-
eration of fatty streak formation by heat shock protein
65 or mycobacterium tuberculosis (George et al., 2000b).
Similarly, reconstitution with IL-4-deficient bone mar-
row in LDLr�/� mice reduces atherosclerotic lesion for-
mation in the aortic arch and the thoracic aorta com-
pared with reconstitution with wild-type bone marrow
(King et al., 2002). Although IL-4 expression in athero-
sclerotic plaques appears to be limited (Uyemura et al.,
1996), among the pro-atherogenic effects of IL-4 we may
count the up-regulation of P-selectin (Khew-Goodall et
al., 1999) and 15-lipoxygenase (Lee et al., 2001b) expres-
sion by endothelial cells, VCAM-1 (Barks et al., 1997)
and matrix metalloproteinase 1 (MMP-1) (Sasaguri et
al., 1998) expression by vascular smooth muscle cells,
and the augmentation of CD36 receptor expression
(Feng et al., 2000) and cholesterol esterification (Corni-
celli et al., 2000) in macrophages. On the other hand,
IL-4 has also been shown to inhibit smooth muscle cell

proliferation (Vadiveloo et al., 1994; Sasaguri et al.,
1998) and macrophage adhesiveness (Elliott et al.,
1991). The net effect of IL-4 in atherosclerosis thus still
hangs in the balance, and it may vary with the stage of
the disease.

IL-9 was initially identified as a mast cell and T cell
growth factor (Renauld et al., 1990) and has subse-
quently been shown to lead to exaggerated Th2-type
inflammatory responses (Godfraind et al., 1998; McLane
et al., 1998) and thymic lymphomas (Renauld et al.,
1994) in IL-9 transgenic mice. IL-9 is not entirely inde-
pendent in its actions, however, since IL-9 production by
T lymphocytes requires IL-2-mediated stimulation
(Houssiau et al., 1992), and the mitogenic effect of IL-9
on T lymphocytes requires their preactivation (Uytten-
hove et al., 1988). In a murine model of Gram-negative
bacterial shock, IL-9 led to suppression of TNF�, IL-12,
and IFN�, possibly mediated by an induction of IL-10
expression (Grohmann et al., 2000). In agreement with
this study, IL-9 has been found to induce the expression
of the intracellular cytokine signal inhibitors cytokine-
inducible SH2-containing protein, suppressor of cyto-
kine signaling (SOCS)-2 and SOCS-3 (Lejeune et al.,
2001). SOCS-3, in particular, may impair signaling by
pro-atherogenic cytokines that act through the gp130
receptor, including IL-6 and IL-12. Some of the activities
of IL-9 may also be mediated by its induction of IL-22
(IL-TIF), which shares 22% sequence homology with
IL-10 (Dumoutier et al., 2000). Although its role in ath-
erosclerosis has thus far not been elucidated, it appears
that IL-9 may be potentially anti-atherogenic through a
deflection of the immune response from a Th1 to a Th2
type. Albeit that a caveat needs to be added, as overzeal-
ous stimulation of Th2 responses may well prove to be
detrimental in the later stages of atherosclerosis. Thus,
mast cells have been identified in advanced plaques
(Kaartinen et al., 1994a; Jeziorska et al., 1997) and are
presumed to promote plaque instability by the secretion
of chymase (Kaartinen et al., 1994b; Kovanen, 1997) and
the stimulation of calcification (Jeziorska et al., 1998).
Their stimulation may promote, rather than impede, the
development of atherosclerotic complications.

IL-15 is produced by a variety of cells, including mono-
cytes (Musso et al., 1999) and endothelial cells (Oppen-
heimer-Marks et al., 1998; Krishnaswamy et al., 1999),
and has an activity profile similar to IL-2, without shar-
ing sequence homology (Waldmann and Tagaya, 1999).
IL-15 mediates extravasation of lymphocytes through its
stimulatory and chemotactic effects on natural killer
cells (Carson et al., 1994; Allavena et al., 1997) and T
lymphocytes (Giri et al., 1995; Sancho et al., 1999) and
by the up-regulation of hyaluronan on the endothelium
(Estess et al., 1999). Recently, atherosclerotic lesions in
humans and apoE�/� mice were found to contain IL-
15-responsive T cells as well as IL-15 itself, which colo-
calizes with oxidized LDL-positive macrophages (Hout-
kamp et al., 2001, Wuttge et al., 2001). IL-15 may
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therefore accelerate atherogenesis by promoting the re-
cruitment and antigen-independent induction of T lym-
phocytes.

Despite sharing only 20 to 25% sequence homology
and differing from IL-4 in lacking an effect on T cell
function (Zurawski and de Vries, 1994), IL-13 is highly
akin to IL-4 with respect to its immunomodulatory prop-
erties (Opal and DePalo, 2000), which is likely to be
attributable to IL-4R-mediated Stat6 activation by both
cytokines (Hart et al., 1999). In monocytes, IL-13 atten-
uates the expression of a wide range of inflammatory
cytokines, including IL-1, IL-6, IL-8, IL-10, IL-12, MIP-
1�, granulocyte-macrophage colony-stimulating factor
(GM-CSF), granulocyte colony-stimulating factor (G-
CSF), IFN�, and TNF�, while up-regulating the expres-
sion of IL-1ra (de Waal Malefyt et al., 1993; Mijatovic et
al., 1997). Nitric oxide production is inhibited by IL-13 in
macrophages (Doherty et al., 1993; Bogdan et al., 1997)
and smooth muscle cells (Ruetten and Thiemermann,
1997). The properties of IL-13 are not exclusively anti-
inflammatory, however, as exemplified by the IL-13-
mediated potentiation of IL-8 receptor expression, 15-
lipoxygenase expression, and LDL oxidation by
monocytes (Nassar et al., 1994; Folcik et al., 1997;
Bonecchi et al., 2000), and of IL-8 and MCP-1 release in
response to IL-1� or TNF� in SMCs (Jordan et al., 1997).
Moreover, IL-13 is known to enhance the transmigration
of leukocytes by stimulating the endothelial expression
of adhesion molecules (Bochner et al., 1995; Ying et al.,
1997) and chemotactic factors (Goebeler et al., 1997). In
analogy with IL-4, the overall effect of IL-13 in athero-
sclerosis is still controvertible.

The complex actions of IL-2 family members in the
vascular wall are depicted in Fig. 2.

C. The gp130 Family

The common receptor subunit shared by the members
of this family of cytokines, gp130, was first discovered as
a signal transducer for IL-6 (Hibi et al., 1990). The other
factors to employ this receptor subunit in combination
with their own specific subunit, are IL-11 (Yin et al.,
1993), IL-12 (Chua et al., 1994), leukemia inhibitory
factor (Gearing et al., 1991), oncostatin M (Gearing et
al., 1992), cardiotrophin-1 (Ip et al., 1992), ciliary neu-
rotrophic factor (Pennica et al., 1995), and neurotrophin-
1/B cell-stimulating factor-3 (Senaldi et al., 1999) (Fig.
1). Following gp130 binding, the Janus kinases Jak1,
Jak3, and Tyk2 and the transcription factors Stat1 and
Stat3 are phosphorylated (Heinrich et al., 1998). In this
review, we shall restrict the discussion to the interleu-
kin members of the gp130 family.

In addition, two novel heterodimeric interleukins with
an activity profile similar to IL-12 have recently been
identified. IL-23 is composed of a p19 subunit and the
p40 subunit of IL-12 (Oppmann et al., 2000), and this
cytokine acts through a receptor composed of IL-12R�1
and a novel cytokine receptor subunit, IL-23R (Parham

et al., 2002). IL-27 is made up of an IL-12 p40-related
and an IL-12 p35-related protein and binds to the gp130-
related receptor WSX-1/TCCR (Pflanz et al., 2002).

Endothelial cells, smooth muscle cells, and macro-
phages are capable of elaborating IL-6, and its expres-
sion has been observed in atherosclerotic lesions in hu-
mans, hypercholesterolemic rabbits, and apoE-deficient
mice (Ikeda et al., 1992; Kishikawa et al., 1993; Seino et
al., 1994; Rus et al., 1996; Sukovich et al., 1998; Schief-
fer et al., 2000). Although the endothelium is largely
unresponsive to IL-6 (Podor et al., 1989), addition of the
soluble IL-6R� subunit (sIL-6R) enables endothelial
cells to mount an inflammatory response to IL-6, by
interacting with membrane-bound gp130 (Jones et al.,
2001). This process has been termed “trans-signaling”,
and it may lead to increased endothelial cell adhesive-
ness by the up-regulation of E-selectin, ICAM-1, and
VCAM-1, and the release of inflammatory mediators,
including MCP-1, IL-8, and IL-6 itself (Modur et al.,
1997; Romano et al., 1997). Thus, sIL-6R present in
serum and/or elaborated locally by cells in the intima
may serve to augment endothelial adhesion and extrav-
asation of leukocytes into the atherosclerotic plaque.
Monocytes and macrophages, on the other hand, produce
IL-6R autonomously and therefore do not depend on
ambient sIL-6R levels for IL-6-mediated modulation of
gene expression (Akira and Kishimoto, 1996). The effec-
tor functions of IL-6 in cells of the monocyte/macrophage
lineage include the differentiation of monocytes to mac-
rophages (Chomarat et al., 2000), the up-regulation of
acute phase response gene expression in hepatocytes
and macrophages (Perlmutter, 1989), and the priming of
macrophages for enhanced TNF� production in response
to lipopolysaccharide (LPS) administration (Cochran
and Finch-Arietta, 1992). In smooth muscle cells, IL-6
induces proliferation directly (Nabata et al., 1990; Ikeda
et al., 1991) and indirectly through the initiation of an
autocrine loop mediated by the up-regulation of gp130
(Klouche et al., 1999). In addition, smooth muscle cells
are stimulated by IL-6 to express ICAM-1 (Ikeda et al.,
1993) and to evolve into foam cells (Klouche et al., 2000).

Whereas homozygous deletion of gp130 in mice leads
to intrauterine death due to myocardial hypoplasia (Yo-
shida et al., 1996), IL-6-deficient mice develop normally
despite an attenuated acute phase response and im-
paired cellular immunity to virus infection (Kopf et al.,
1994). This is a reflection of the functional redundancy
in gp130-mediated signaling and thus of the extent to
which the other members of the gp130 family can take
over IL-6-mediated functions. IL-6 was initially de-
scribed as a lymphocyte stimulatory factor but has since
been found to exert a plethora of inflammatory effects
(Hirano et al., 1990). With the possible exception of IL-1,
IL-6 is the cytokine with the most extensively studied
pro-atherogenic profile. Causality has been established
through the exacerbation of early atherosclerosis by re-
combinant IL-6 in various atherosclerosis-prone murine
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models (Huber et al., 1999). Interestingly, the progres-
sion of atherosclerotic lesions to an advanced phenotype
appears to be inhibited by IL-6 in apoE-deficient mice,
uncovering a potentially biphasic mode of action in
atherogenesis (Elhage et al., 2001), which is perhaps
partly explained by its observed anti-inflammatory
properties (Barton et al., 1996; Xing et al., 1998) and its
inhibition of macrophage class A scavenger receptor ex-
pression (Liao et al., 1999). Nonetheless, inhibition of
IL-6 signaling may be considered to constitute an attrac-
tive therapeutic strategy for the prevention of coronary
heart disease (Stein and Kung Sutherland, 1998; Yud-
kin et al., 2000).

Clinically, elevated levels of IL-6 and its hepatic by-
product C-reactive protein (Verma et al., 2002) are as-
sociated with increased risks of coronary and peripheral
atherosclerosis (Erren et al., 1999; Mazzone et al., 1999;
Flex et al., 2002; Bermudez et al., 2002; Kato et al., 2002;
Stenvinkel et al., 2002; van der Meer et al., 2002), myo-
cardial infarction (Ridker et al., 2000b; Ikeda et al.,
2001), and the risk of death of patients with cardiovas-
cular disease (Volpato et al., 2001), and IL-6 has been
suggested to mediate the pro-atherogenic properties of
cytomegalovirus (Blankenberg et al., 2001). In a large
multicenter study, IL-6 gene polymorphisms were found
to correlate with the severity of coronary artery disease
and the risk of myocardial infarction (Georges et al.,
2001), and carotid atherosclerosis has been shown to be
independently linked with an IL-6 promoter polymor-
phism (Rauramaa et al., 2000; Rundek et al., 2002), as
has the risk of coronary artery disease (Humphries et
al., 2001). In addition, lower levels of soluble IL-6 recep-
tor, a naturally occurring IL-6 antagonist, are linked
with the risk of myocardial infarction (Ueda et al., 1999).
Although these clinical findings do not establish causal-
ity, they have identified a strong association between
IL-6 levels and atherosclerosis.

Despite sharing considerable redundancy with IL-6
with respect to its signaling and effector functions, IL-11
has been judged to be a more anti-inflammatory member
of the gp130 family of cytokines based on the net effect of
its pleiotropic actions (Schwertschlag et al., 1999; Taki
et al., 1999). In macrophages, recombinant IL-11 has
been found to attenuate macrophage expression of
TNF�, IL-1�, IL-12, and nitric oxide following an LPS
challenge (Trepicchio et al., 1996; Leng and Elias et al.,
1997). These effects are direct and mediated by NF-�B
down-regulation (Trepicchio et al., 1997), as is IL-11-
mediated attenuation of smooth muscle cell proliferation
and cytokine production (Zimmerman et al., 2002). In
endothelial cells, IL-11 provides protection against im-
mune-mediated injury (Mahboubi et al., 2000), and in-
hibits apoptosis through up-regulation of survivin (Mah-
boubi et al., 2001). In CD4� lymphocytes, IL-11 has
been found to induce a shift from a Th1 to a Th2 pheno-
type (Bozza et al., 2001). This effect has been put to use
in immunomodulatory treatment employing IL-11 in

psoriasis (Trepicchio et al., 1999) and Crohn’s disease
(Sands et al., 1999), and it may also offer therapeutic
possibilities in the setting of atherosclerosis.

Activated monocytes are the primary source of IL-12
(D’Andrea et al., 1992), a cytokine that induces prolifer-
ation (Gately et al., 1991) and a shift toward a Th1
expression pattern in lymphocytes (Hsieh et al., 1993).
IL-12 was originally implicated in atherosclerosis by
Uyemura et al. (1996), who observed an abundance of
p40 mRNA and IL-12 p70 protein in atherosclerotic le-
sions, and up-regulation of IL-12 production by mono-
cytes following the addition of highly oxidized LDL. Sub-
sequently, atherosclerotic lesions in apoE-deficient mice
were found to contain IL-12, and their progression to be
accelerated by daily injections of recombinant IL-12 (Lee
et al., 1999). Conversely, a selective defect of macro-
phage IL-12 synthesis due to 12/15-lipoxygenase defi-
ciency reduces lesion formation in atherosclerosis-prone
Apobec-1�/�/ApoE�/� mice (Zhao et al., 2002). In clin-
ical practice, raised serum levels of IL-12 have been
found to be associated with acute myocardial infarction
(Zhou et al., 2001a).

D. Granulocyte-Macrophage Colony-Stimulating Factor

The genes encoding the members of this family—IL-3,
IL-5, and GM-CSF—are clustered on the human chro-
mosome 5 (van Leeuwen et al., 1989) (Fig. 1). Their
products bind to receptor complexes consisting of a com-
mon � chain (�c) and a cytokine-specific � chain (Ha-
yashida et al., 1990; Kitamura et al., 1991), resulting in
the activation of JAK/STAT, the ras/MAPK, and the
phosphatidylinositol-3 kinase pathway (Guthridge et
al., 1998). The primary effector functions to be identified
for this family are the promotion of hematopoietic pro-
liferation, survival, and differentiation, which is con-
firmed by the invariable occurrence of a myeloprolifera-
tive disorder in human common � chain transgenic mice
(Nishinakamura et al., 1995). Since mice deficient for
IL-3, IL-5, or GM-CSF suffer from pulmonary alveolar
proteinosis, signaling via receptors involving the com-
mon � chain is thought to exert additional pleiotropic
actions on mature cells of the monocyte/macrophage lin-
eage (D’Andrea et al., 1998).

Indeed, IL-3 has been found to stimulate adhesion
(Elliott et al., 1990) and c-jun expression in monocytes
(Mufson et al., 1992). It is elaborated by activated T
lymphocytes in atheromatous tissue and acts on smooth
muscle cells to increase migration and proliferation
(Brizzi et al., 2001). Moreover, receptors for IL-3 are also
present on endothelial cells (Colotta et al., 1993a), which
respond to the binding of IL-3 by increased proliferation,
by augmented adhesion molecule, major histocompati-
bility complex II, and cytokine production, and by par-
ticipating in angiogenesis in vivo (Brizzi et al., 1993;
Korpelainen et al., 1995; Dentelli et al., 1999). IL-3 is
thus believed to play a role in the early stages of athero-
genesis by facilitating leukocyte extravasation and in
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advanced lesions by augmenting macrophage activation,
smooth muscle cell accumulation, and neovasculariza-
tion of the plaque.

The involvement of IL-5 in the stimulation of B cell
and eosinophil responses has been meticulously docu-
mented, with the aid of, inter aliter, IL-5 transgenic
(Tominaga et al., 1991), and IL-5-deficient mouse mod-
els (Kopf et al., 1996). Its role in atherosclerosis remains
uncharted territory, however. IL-5 is produced by endo-
thelial cells (Krishnaswamy et al., 1999), but their ex-
pression of the IL-5� receptor subunit is limited (Colotta
et al., 1993a). IL-5 expression appears to be scanty in
advanced human atherosclerotic plaques, and is associ-
ated with the presence of eosinophils (Frostegard et al.,
1999). Because IL-5 is an archetypal Th2 lymphokine, it
may activate mast cells in the atherosclerotic plaque,
which have been associated with the development of
unstable lesions and plaque rupture (Kaartinen,
1994a,b, 1996a,b, 1998; Kovanen et al., 1995). Notwith-
standing its low prevalence, the significance of locally
produced IL-5 may thus increase in importance with the
age of the lesion, and this could lead to destabilization of
the atheroma.

E. Interleukin-10

This family comprises a sizeable array of mammalian
and viral molecules that possess a considerable degree of
sequence similarity with its founder member, IL-10
(Rich and Kupper, 2001; Volk et al., 2001). These include
IL-19, IL-20, IL-22, IL-24/MDA-7, IL-26/AK155, and the
IL-10 homologs encoded by Epstein-Barr virus, cytomeg-
alovirus, herpesvirus papio, and Yaba-like disease virus
(Fickenscher et al., 2002; Wolk et al., 2002; Fig. 1).

IL-10 was initially identified as a cytokine synthesis
inhibitory factor (CSIF) (Fiorentino et al., 1989), but has
subsequently been found to be a pleiotropic immuno-
regulatory cytokine that is secreted by a wide variety of
cells, including lymphocytes and monocytes/macro-
phages (Lalani et al., 1997b; Moore et al., 2001). IL-10
signaling is mediated by Jak1 and Stat3 and entails the
down-regulation of NF-�B activity (Schottelius et al.,
1999). Its effector functions include induction of a shift
of T cell cytokine expression from a Th1 to a Th2 profile
(Fiorentino et al., 1989), and attenuation of the produc-
tion of proinflammatory cytokines by macrophages (Bog-
dan et al., 1991; de Waal Malefyt et al., 1991a; Lang et
al., 2002) and polymorphonuclear neutrophils (Cassa-
tella et al., 1993). In addition, IL-10 effects differentia-
tion of monocytes to macrophages (Allavena et al., 1998),
suppression of antigen-presenting activity (de Waal
Malefyt et al., 1991b), a decline in the release of reactive
nitrogen and oxygen intermediates (Gazzinelli et al.,
1992; Mallat et al., 1999a; Haddad and Fahlman, 2002),
and inhibition of ICAM-1 expression (Song et al., 1997).
Monocyte adhesion to endothelial cells is attenuated by
IL-10 through modulation of monocyte CD18 and
CD62-L expression (Mtairag et al., 2001) and attenua-

tion of ICAM-1 and VCAM-1 expression on endothelial
cells (Krakauer, 1995; Lindner et al., 1997). IL-10 has
been found to be present in mature plaques (Uyemura et
al., 1996; Mallat et al., 1999a) and is thought to play an
active role in curbing the inflammatory milieu of the
vessel wall (Tedgui and Mallat, 2001). This is supported
by the observation that IL-10 knockout (IL-10�/�) mice
suffer from accelerated atherosclerosis, whereas IL-10
transgenic mice are relatively protected (Pinderski-Os-
lund et al., 1999). Clinical poignancy is added by the fact
that a hypoactive allele of the IL-10 promoter sequence
increases the risk of cardiovascular events in hemodial-
ysis patients (Girndt et al., 2002), whereas serum levels
of IL-10 have been found to be decreased in patients
with unstable angina compared with patients with
chronic stable angina (Smith et al., 2001). Indeed, as
IL-10 is known to down-regulate MMP-9 production and
up-regulate tissue inhibitor of metalloproteinase-1
(TIMP-1) expression in macrophages (Lacraz et al.,
1995), IL-10 may have a direct stabilizing influence on
advanced plaques. Moreover, the combined weight of
these data has led to extensive speculation about the
therapeutic applicability of IL-10 in atherosclerosis
(Terkeltaub, 1999).

F. Chemokines

On the basis of their chemoattractant activity for leu-
kocytes, the interleukins IL-8 and IL-16 have been clas-
sified as chemokines (Center and Cruikshank, 1982;
Mukaida et al., 1989). IL-16 has not been scrutinized in
an atherosclerotic context, and any potential influence is
likely to be mediated mainly by its effects on lymphocyte
function, which include stimulation of migration, prolif-
eration, and cytokine production (Cruikshank et al.,
2000). IL-8, on the other hand, is well established as a
pro-atherogenic factor (Reape and Groot, 1999). Its ex-
pression is induced in monocytes and macrophages fol-
lowing the addition of oxidized LDL and cholesterol,
respectively (Terkeltaub et al., 1994; Wang et al., 1996).
Atheromatous tissue has been found to contain IL-8,
most of which is thought to be derived from intimal
macrophages (Apostolopoulos et al., 1996; Wang et al.,
1996). In addition, cytokine-stimulated vascular smooth
muscle cells elaborate IL-8 (Wang et al., 1991), and
endothelial cells respond to cyclic stretch by up-regula-
tion of IL-8 production (Okada et al., 1998). Boisvert et
al. (1998) have discovered an important role for macro-
phage-derived IL-8 in atherosclerotic lesion develop-
ment, as transplantation of IL-8�/� bone marrow to
irradiated and atherogenic diet-fed LDLr�/� mice re-
sulted in less extensive intimal macrophage accumula-
tion than transplantation using IL-8�/� donors. IL-8 is
presumed to accelerate atherogenesis by increasing the
endothelial adhesiveness for monocytes (Gerszten et al.,
1999), by its mitogenic and chemoattractant actions on
smooth muscle cells (Yue et al., 1994), and by mediating
angiogenesis in the atherosclerotic plaque (Simonini et

INTERLEUKINS IN ATHEROSCLEROSIS 141

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


al., 2000). Furthermore, IL-8 may cause destabilization
of advanced plaques through its inhibitory effect on
TIMP-1 expression in macrophages and an ensuing in-
crease in metalloproteinase activity (Moreau et al.,
1999). Interestingly, IL-8 levels have been found to be
elevated in peripheral blood monocytes from hypercho-
lesterolemic patients (Porreca et al., 1999), and serum
IL-8 levels to be associated with unstable angina pecto-
ris and acute myocardial infarction (Zhou et al., 2001a),
reflecting the potential clinical relevance of IL-8-medi-
ated functions in atherosclerosis.

G. Interleukin-17

The term IL-17 harbors a family of proinflammatory
cytokines, of which the founder member was found to be
an ortholog of murine CTLA-8 (Rouvier et al., 1993) and
its gene to have been captured by the T lymphotropic
herpesvirus saimiri (Rouvier et al., 1993, Yao et al.,
1995a,b; Fossiez et al., 1998). It is primarily produced by
activated memory T cells and Th1/Th0 cells (Aarvak et
al., 1999) and binds to a ubiquitously expressed receptor
(Yao et al., 1995a). More recently, the variants IL-17B,
IL-17C, IL-17E, IL-17F, and IL-25 have been cloned,
which are considered to signal through subtype-specific
receptors (Li et al., 2000b; Hymowitz et al., 2001; Lee et
al., 2001a; Hurst et al., 2002). IL-17 induces the expres-
sion of proinflammatory mediators by a variety of cells,
including the production of IL-6 and IL-8 by stromal
cells (Yao et al., 1995a,b), ICAM-1 by fibroblasts and
keratinocytes (Yao et al., 1995b; Albanesi et al., 1999),
as well as IL-1�, IL-1ra, IL-6, IL-10, TNF�, prostaglan-
din E2, MMP-3, and MMP-9 by macrophages (Jovanovic
et al., 1998, 2001). Binding of IL-17 to its receptor re-
sults in an increase in Ca2� influx, a decrease of intra-
cellular cAMP levels, activation of mitogen-activated
protein kinases, and stimulation of NF-�B activity (Jo-
vanovic et al., 1998; Awane et al., 1999). The activity
profiles of IL-17B and IL-17C differ from that of IL-17 in
that they fail to induce IL-6 in fibroblasts but are capa-
ble of stimulating the release of TNF� and IL-1� from
the monocytic cell line THP-1 (Li et al., 2000b). IL-17E
has been shown to stimulate NF-�B activity and the
production of IL-8 in TK-10 cells (Lee et al., 2001a). The
IL-17 family has not yet been implicated in atherogen-
esis, but its proinflammatory effects on macrophages,
the stimulation of endothelial IL-2 and MCP-1 elabora-
tion by IL-17F (Starnes et al., 2001), the production of
IL-17 by activated T cells, and the widespread expres-
sion of the IL-17 receptor make this interleukin family a
potential pro-atherogenic candidate.

III. Modulation of Cytokine Function As a
Therapeutic Strategy for Atherosclerosis

From the preceding discussion it will have become
evident that, despite having been thoroughly researched
with respect to their basic immunological functions,

many of the interleukins identified to date have yet to be
typecast on the atherosclerotic stage (Table 1). When
classified according to their perceived role in atherogen-
esis, a large number thus remain in the “unknown”
category. A similarly sizable group has been found to be
pro-atherogenic, and only a small subset has been adju-
dicated to possess an equivocal (IL-4, IL-13) or anti-
atherogenic (IL-1ra, IL-9, IL-10, IL-11) propensity. It
therefore appears that the most rewarding strategies of
interleukin modulation for the prevention of atheroscle-
rosis are likely to involve the down-regulation of signal-
ing mediated by proinflammatory cytokines. Nonethe-
less, due attention also needs to be paid to the intriguing
therapeutic possibility of harnessing the anti-athero-
genic potential of anti-inflammatory interleukins. The
modulation of (patho)physiological effects exerted by cy-
tokines that have thus far been adjudicated to have
either an overtly pro- or an anti-atherogenic role on the
evidence of animal intervention studies are, in the short
term, the most likely candidates for the development of
such strategies (Table 2; Fig. 3).

The function of interleukins is tightly regulated at a
number of levels in their production, processing, and
signaling cascades. Interleukins being proteins, the first
step in their production necessitates the binding of nu-
clear transcription factors to enable gene transcription.
Following mRNA translation, the production of mature
molecules requires additional proteolytic processing for
a number of interleukins and interleukin receptors. The
ambient concentration of some interleukins is known to
be negatively regulated following exposure on the cell
surface or release into the surrounding extracellular

TABLE 1
The (causative, associative, or presumed) role of interleukin family

members in atherosclerosis

Pro-
Atherogenic Equivocal Anti-

Atherogenic Unknown

IL-1 family IL-1�/�
IL-18

IL-1ra
IL-2 family IL-2

IL-4
IL-7

IL-9
IL-15 IL-21

IL-13
CSF family IL-3

IL-5
gp130 family IL-6

IL-11
IL-12

IL-23
IL-27

Chemokines IL-8
IL-16

IL-10 family IL-10
IL-19
IL-20
IL-22
IL-24
IL-26

IL-17 family IL-17A/B/C/E/F IL-25
Unclassified IL-14

Bold type represents causative role; italic type represents presumed role; light-
face roman type represents associative role.
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space. This may involve neutralization of interleukins
by binding to a specific antibody or to a soluble form of
its corresponding receptor.

Interleukin molecules that escape endogenous regula-
tion mechanisms can bind to their target receptor and
thus initiate a signaling sequence. The abundance of the
membrane-bound form of interleukin receptors may be
controlled by endocytosis and degradation via the ubiq-
uitin-proteasome system. The signaling cascade is fre-
quently rather complex and often shares redundancy
with those activated by other members of a particular
interleukin family. A varied array of pathways has been
found to convey interleukin signaling to the nucleus,
frequently involving receptor-mediated activation of ki-
nases (including Jaks, Tyks, and MAPKs) and subse-
quent activation of nuclear transcription factors (includ-

ing STATs, NF-�B, and AP-1) (Fig. 1). Intracellular
signal transduction is negatively controlled by specific
inhibitors of the Jak-STAT pathway that regulate its
components by dephosphorylation, degradation by the
ubiquitin-proteasome pathway, and binding of domi-
nant-negative STATs. Signaling eventually culminates
in the transcriptional activation of a cytokine-specific set
of genes, the products of which mediate the biological
functions of the cytokine in question by intracellular,
autocrine, paracrine and endocrine mechanisms.

In theory, any step in the production and effector
pathways of a particular interleukin may be considered
to represent a potential target for therapies aimed at
modulating its biological activity (Fig. 4). In practice,
various approaches are not yet feasible due to a lack of
detailed understanding of the mechanisms involved.

FIG 2. Overview of the complex actions of IL-2 family members in the vascular wall. All members are produced by cellular constituents of the
atherosclerotic plaque (dotted line: EC, endothelial cell; SMC, smooth muscle cell; M�, macrophage; TC, T cell) and exert effects that are considered
to be either pro-atherogenic (continuous line) or anti-atherogenic (dashed line).

FIG 3. Primary vascular target cells and summarized actions of proven pro- and anti-atherogenic interleukins.
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Moreover, the specificity of such interventions is fre-
quently limited by considerable redundancy in inter-
leukin processing and signaling pathways. Although
this may be desirable if the goal of the intervention is
a general reduction of proinflammatory signaling, a
more subtle change of cellular functions may require
direct alteration of extracellular interleukin levels or
interleukin-receptor interaction. In the specific case of
atherosclerosis, the more difficult hurdles on the
course to the clinical use of cytokine modulation ther-
apy are hidden in the insidious and chronic nature of
the atherosclerotic process (Ross 1986, 1993a, 1999).
Inherent in this observation is the need for any strat-
egy aimed at primary prevention to be comparably
chronic in its duration of action. In view of the high
prevalence of the disease and its still poorly predict-
able course, such a strategy would also need to be safe,
effective, and affordable. Most of the interleukin-
based treatments that have been conceived thus far do
not answer these demands. In the meantime, it may
be more realistic to focus on a remedy that is capable
of effecting secondary or tertiary prevention. An exam-
ple of the latter is the phenotypic stabilization of
unstable atherosclerotic atheromata to avert the risk
of plaque rupture and fatal thrombosis. This may be
achievable by the use of a short, and possibly local-
ized, course of anti-interleukin therapy.

In this review, we discuss examples of techniques
directed at modulating each of the steps described
above. We shall pay particular attention to methods
that have been shown to hold promise for the preven-
tion of atherosclerosis or those that interfere with the
function of interleukins thought to be involved in
atherogenesis.

A. Inhibition of Expression/Translation of Interleukins
and Their Receptors

The foremost approach to the specific inhibition of
interleukin (receptor) expression and translation has
been the use of short strands of (modified) nucleotides
that are complimentary to stretches of mRNA encoding
the target protein. This is thought to lead to formation of
DNA:RNA duplexes and subsequent degradation of the
mRNA sequence by RNaseH. The advent of this oligo-
nucleotide-based “antisense” therapy was hailed as the
dawn of a new era of highly specific and effective treat-
ments for a variety of diseases, ranging from cancer to
hypertension (Raizada et al., 2000; Lebedeva and Stein,
2001). This unbridled optimism has been somewhat de-
flated in recent years, however, as it has transpired that
the mechanism of action of antisense molecules is fre-
quently less specific and far more complex than origi-
nally conceived (Lebedeva and Stein, 2001). Moreover,
unmodified oligonucleotides are rapidly degraded in
vivo, and efficient transfection of target cells with anti-
sense constructs has proved difficult. Nonetheless, sev-
eral studies describing the antisense-mediated down-
regulation of interleukin production have been reported
(Crooke, 2000).

IL-1� is known to inhibit endothelial cell proliferation,
and thereby to promote the type of endothelial injury
that is thought to precipitate atherogenesis (Ross, 1986).
Furthermore, IL-1� is an autocrine stimulator of adhe-
sion molecule expression, including ICAM-1 and E-se-
lectin, and the up-regulation of these molecules by hy-
poxic endothelial cells has been found to be mediated by
IL-1� (Shreeniwas et al., 1992). Antisense oligode-
oxynucleotides (ODNs) directed against IL-1� have been

FIG 4. Depiction of potential strategies for the modification of interleukin activity as a therapy for atherosclerosis.
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found to prevent endothelial cell senescence, to prolong
their life span, and to hinder adhesion molecule produc-
tion in vitro (Maier et al., 1990; Maier and Ragnotti,
1993). Moreover, the IL-1� -mediated up-regulation of
cyclooxygenase expression in endothelial cells has been
shown to be limited by the addition of ODNs directed
against protein kinase C (PKC), which is a mediator in
the signal transduction pathway that leads to IL-1�
induction (Hsu et al., 1999). Because interleukin-1 also
affects smooth muscle cell function, Hsu et al. (1999)
transfected vascular smooth muscle cells in vitro with
an Epstein-Barr virus-derived vector expressing IL-1
antisense transcripts, which repressed the expression of
matrix genes such as type I collagen and fibronectin by
smooth muscle cells and prolonged their life span. In
macrophages, more specifically the macrophage-like cell
line U937, the expression of IL-1� can also be down-
regulated by means of antisense techniques employing
phosphorothioate oligonucleotides (Yahata et al., 1996).

The platelet-derived growth factor (PDGF)-mediated
up-regulation of IL-6 in smooth muscle cells can be at-
tenuated by antisense ODNs directed against this pro-
atherogenic interleukin (Roth et al., 1995). This has
been shown to inhibit cell division, and has thus estab-
lished IL-6 as a mediator of PDGF-induced smooth mus-
cle cell proliferation. The feasibility of antisense-medi-
ated inhibition of IL-6 expression in the vessel wall has
been demonstrated by ex vivo pressure-mediated trans-
fection of naked oligonucleotides into human saphenous
vein explants, which resulted in 70 to 75% inhibition of
IL-6 expression, as measured 2 h after the transfection
procedure (Mann et al., 1999).

Chemokine function has also been successfully re-
pressed by antisense techniques. Thus, the role of IL-8
as a monocyte-derived angiogenic factor was revealed in
vitro by the inhibition of monocyte-induced angiogenic
activity following the administration of an IL-8 anti-
sense oligonucleotide (Koch et al., 1992), and pretreat-
ment of human pulmonary artery endothelial cells with
antisense against MCP-1 has been shown to reduce
TNF�-induced trans-endothelial monocyte migration
(Maus et al., 2000).

Rather than inhibiting the production of interleukins
themselves, antisense strategies could also be deployed
against interleukin signaling by altering the expression
of the relevant receptor. Indeed, ODNs directed against
the IL-1 receptor have been shown to diminish IL-1-
stimulated prostaglandin E2 synthesis in murine and
human fibroblasts (Burch and Mahan, 1991), and in vivo
applicability was confirmed by the finding that subcuta-
neous injection of IL-1 receptor antisense in mice de-
creased neutrophil accumulation at sites of IL-1 injec-
tion.

Intriguingly, ODNs containing cytidine phosphate
guanosine motifs have been identified as potent stimu-
lators of Th1 type responses, and this type of aspecific
effect needs to be taken into account during the design of

anti-inflammatory antisense sequences (Chu et al.,
1997). In a drive to enhance the specificity as well as the
efficacy, tolerability, and duration of action of antisense-
mediated mRNA cleavage, the attention has turned to
the use of ribozymes. These are RNA molecules with
intrinsic endonuclease activity, which bind to target
RNA in a base pair-specific fashion, and subsequently
catalyze the cleavage of this RNA strand by facilitating
the hydrolysis of phosphodiester bonds (Zaug et al.,
1986; James and Gibson, 1998). Indeed, stable expres-
sion of ribozymes aimed at IL-1� and ICE can effect a
dramatic decrease in the steady-state levels of their
target mRNAs in the monocytic cell line THP-1 (Leavitt
et al., 2000) and minimized hammerhead ribozymes
have been shown to be active against IL-2 (Sioud et al.,
1997). In vivo efficacy and in vitro reduction of TNF-
induced IL-6 production has been demonstrated for IL-6
ribozymes (Mahieu et al., 1994). The first cardiovascular
target to have been successfully inhibited by ribozyme
therapy directed against cytokine expression is trans-
forming growth factor � (TGF�) production in smooth
muscle cells (Su et al., 2000). In vivo, TGF� ribozymes
have been shown to reduce neointima formation in a rat
model of vascular injury (Yamamoto et al., 2000).

Although ribozymes may prove to be more effective
and specific than antisense oligonucleotides due to their
enzymatic mode of action, they share similar limitations
to their biological activity. Thus, efficient cellular trans-
fection is difficult to achieve, and once it has occurred,
the duration of action is curtailed by a short intracellu-
lar half-life. Both problems have been extensively ad-
dressed, to varying degrees of success. Cellular uptake
has been increased by the use of lipid, peptide, and
polymer delivery systems, and nuclease-mediated deg-
radation has been inhibited by chemical modifications of
the oligonucleotide backbone (Morishita et al., 1994;
Hughes et al., 2001; Lebedeva and Stein, 2001). Circum-
venting both disadvantages in a single approach may be
possible by cloning ribozymes into an expression vector
that affords avid transfection of target cells in addition
to an extended duration of expression. These are char-
acteristics of viral vectors—retroviruses, adenoviruses,
and adeno-associated viruses (AAVs) being the main
protagonists. These viral vectors have all been used as a
carrier for ribozymes, but AAVs are particularly prom-
ising as they combine the main advantage of adenovi-
ruses, i.e., high efficiency of transduction, with the pro-
longed expression due to integration of transgenes in the
genome that is typical of retroviruses (Monahan and
Samulski, 2000). AAVs have been shown to be capable of
transducing endothelial and vascular smooth muscle
cells in vitro, but expression in vivo is confined to the
adventitia (Lynch et al., 1997). Therefore, to constitute a
useful gene transfer vehicle in the prevention of athero-
sclerosis, the issue of targeting accuracy needs to be
addressed, for instance by selecting the most suitable
virus serotype, or by using an adenovirus/AAV hybrid
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system (Recchia et al., 1999; Monahan and Samulski,
2000).

B. Inhibition of Interleukin Processing

As mentioned, the production of mature forms of var-
ious cytokines requires proteolytic processing of inactive
precursors. This is exemplified by the conversion of pro-
IL-1� and pro-IL-18 by ICE/caspase-1 (Wilson et al.,
1994; Tone et al., 1997), and the cleavage of membrane-
bound TNF� by TNF�-converting enzyme (Black et al.,
1997). Interestingly, the shedding of the soluble form of
several interleukin receptors has also been found to
require metalloproteinase activity, including IL-1R, IL-
2R, and IL-6R (Mullberg et al., 1995, 1997). With respect
to atherosclerosis, interference with proteinase-depen-
dent processing may constitute an attractive strategy to
attenuate the release of active IL-1� or to inhibit sIL-
6R-mediated transfer of IL-6 sensitivity to cells that do
not themselves express IL-6R (Jones et al., 2001).

Several naturally occurring ICE inhibitors have been
described (Croucher et al., 2000). Thus, cowpox virus
protein A (CrmA) protects cells infected by cowpox from
immunological clearance by preventing the release of
IL-1� (Ray et al., 1992), whereas the baculovirus protein
p35 performs a similar function in baculovirus-infected
cells (Bump et al., 1995). Smooth muscle cells produce
an endogenous ICE inhibitor, which has been identified
as serpin proteinase inhibitor 9 (PI-9) (Schonbeck et al.,
1997; Young et al., 2000). Interestingly, protein levels of
this enzyme have been found to be decreased in unstable
plaques in conjunction with a reciprocal up-regulation of
IL-1�, suggesting an endogenous anti-inflammatory role
for constitutive PI-9 expression. Consequently, inhibi-
tion of caspase-1 activity might be an effective strategy
in the prevention of lesion destabilization. In consider-
ing the feasibility of therapeutic ICE inhibition, one
might either opt to capitalize on the potency of naturally
occurring antagonists, or one could interpret their action
as a paradigm for the development of synthetic ICE
inhibitors (Livingston, 1997). Several such compounds
have been developed that display activity in vitro. This
includes the down-regulation by WIN 67694 of the LPS-
induced release of IL-1� by murine macrophages (Miller
et al., 1995), and the reduction of human myocardial
ischemic dysfunction in an ex vivo organ culture model
by YVAD (Pomerantz et al., 2001). In vivo, a single
intraperitoneal dose of VE-13,045 administered after an
LPS challenge reduced murine IL-1� serum levels by 50
to 70% (Ku et al., 1996). Prior to clinical use, however,
the specificity for caspase-1 of the compound in question
needs to be warranted, in view of the degree of conser-
vation that has been found to exist between the active
sites of the caspase family members. Moreover, due heed
should be paid to the potentially detrimental inhibition
of caspase-1-mediated apoptosis, which could contribute
toward tissue hyperplasia or even neoplasia.

C. Neutralization of Proinflammatory Interleukins

The biological activity of interleukins is partially reg-
ulated by anti-cytokine antibodies, soluble cytokine re-
ceptors, and cytokine-binding proteins, the elaboration
of which is frequently controlled by the interleukin con-
cerned (Heaney and Golde, 1998; Slifka and Whitton,
2000). Soluble interleukin receptors are produced by
alternative splicing of mRNA or by proteolytic cleavage
of full-length receptors. For instance, IL-1 activity is
inhibited by the soluble type II IL-1 receptor (Giri et al.,
1990), which is shed from neutrophils in response to
proinflammatory stimuli, including TNF, IL-13, and en-
dotoxin (Colotta et al., 1994; Giri et al., 1994b). Its
pathophysiological roles are thought to include the lim-
itation of IL-1 activity in sepsis (Giri et al., 1994b).
Whereas the plasma level of soluble IL-2R has been
deemed to be a marker for T cell activation in ischemic
heart disease (Simon et al., 2001), high levels of sIL-2R
paradoxically reduce the relative risk of lesion instabil-
ity, which is known to be associated with increased
inflammatory activity in the plaque (Blum et al., 1995;
Takeshita et al., 1997; Simon et al., 2001). Moreover, in
vitro studies have evidenced the inhibition of IL-2-in-
duced activation of peripheral mononuclear cells by
sIL-2R (Zorn et al., 1994). Soluble IL-4-binding proteins
are known to occur in mice (Fernandez-Botran and
Vitetta, 1990) and humans (Fanslow et al., 1993). The
benefit of sIL-4R in preventing IL-4-mediated inflamma-
tory responses has been demonstrated in a murine
model of asthma (Henderson et al., 2000), and its ad-
ministration has been found to be safe and to stabilize
lung functions in patients with moderate asthma (Renz,
1999).

For some soluble interleukin receptors, however, the
effects are rather less clear-cut (Heaney and Golde,
1998). The trans-signaling activity conferred by sIL-6R
has already been discussed (Jones et al., 2001), as well
as its role in endothelial cell activation (Modur et al.,
1997; Romano et al., 1997). By contrast, the soluble
receptor subunit for another member of the IL-6 family,
IL-11, has been found to antagonize IL-11 activity (Cur-
tis et al., 1997). Likewise, the soluble form of the gp130
subunit shared by the IL-6 family of receptors is thought
to inhibit IL-6 mediated signaling by binding the IL-6/
sIL-6R complex (Narazaki et al., 1993; Muller-Newen et
al., 1998; Jostock et al., 2001).

Antagonistic binding proteins have recently also been
found for IL-13, IL-18, and IL-22 (Zhang et al., 1997; Xu
et al., 1998b; Novick et al., 1999). IL-18-binding protein
(IL-18bp) has been characterized as a modulator of the
Th1 response on the basis of its ability to inhibit IL-18-
mediated up-regulation of IFN�, IL-8, NF-�B, and
VCAM-1 (Reznikov et al., 2000; Vidal-Vanaclocha et al.,
2000). The human IL-18bp gene encodes at least four
isoforms (Kim et al., 2000b), and its expression is in-
creased by IFN� in a range of human cell lines (Muhl et
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al., 2000). Serum levels of IL-18bp are raised in septic
patients, with a concomitant decrease in free IL-18, and
its roles are therefore presumed to include the provision
of negative feedback in states of high inflammatory ac-
tivity (Novick et al., 2001). Recently, Mallat et al.
(2001b) have demonstrated the anti-atherogenic poten-
tial of IL-18bp. They have found electrotransfer of an
expression plasmid encoding murine IL-18bp to attenu-
ate atherosclerotic lesion development in the aorta of
apoE�/� mice. This treatment also resulted in changes
in plaque composition, comprising a decrease in inflam-
matory cell content and an increase of smooth muscle
cell and collagen content of the lesion. IL-18bp therefore
appears to have a beneficial effect on plaque stability as
well as plaque progression. Moreover, IL-18bp may pro-
mote ischemia-induced neovascularization by inhibiting
the anti-angiogenic role of IL-18, and its administration
could therefore also aid postinfarction myocardial recov-
ery (Mallat et al., 2002). Interestingly, poxvirus proteins
have been identified that share considerable sequence
homology with human IL-18bp. These inhibit virus elim-
ination by the host’s immune system by binding IL-18,
attenuating IL-18-induced IFN� production, and im-
pairing natural killer cell cytotoxicity (Born et al., 2000;
Calderara et al., 2001) and may be promising anti-
atherogenic agents in their own right. Similar protective
functions appear to be served by the viral capture and
modification of other cytokine receptor genes (Spriggs,
1996; McFadden et al., 1998), including the IL-1R
(Spriggs et al., 1992) and IL-8R (Rosenkilde et al., 1999),
and the chemokine binding proteins M-T1 and M-T7
(Upton et al., 1992; Graham et al., 1997; Lalani et al.,
1997a). The latter is an IFN�R homolog and has been
used successfully in the attenuation of angioplasty-in-
duced neointima formation in rat carotid arteries (Liu et
al., 2000). A 38-kDa glycopeptide encoded by the tan-
apox virus binds IL-2, IL-5, and IFN�, and inhibits the
TNF�-induced expression of E-selectin, VCAM-1, and
ICAM-1 by tanapox virus-infected primary endothelial
cells (Paulose et al., 1998).

Other cytokines have also been targeted by soluble
receptor therapy, the foremost example being the antag-
onism of TNF�. TNF� has been suggested to be pro-
atherogenic by virtue of its presence in atherosclerotic
lesions and its proinflammatory effects on all cell types
involved in atherogenesis, including the up-regulation of
adhesion molecules, chemoattractants, cytokines, and
growth factors (LeBoeuf and Schreyer, 1998). Although
systemic TNF� levels are not correlated with an in-
creased propensity to atherosclerosis, the level of TNF�
is an independent risk factor for the occurrence of acute
coronary events in patients with coronary artery disease
(Ridker et al., 2000a; Sack, 2002). Most importantly,
however, TNF� levels are known to be raised in conges-
tive heart failure and to exacerbate heart failure in
murine models, probably due to excessive myocardial
remodeling (Bradham et al., 2002).

TNFR-IgG fusion proteins have proven their worth in
reducing the TNF� -mediated induction of proinflamma-
tory interleukins, including IL-1� and IL-6 (Abraham et
al., 1994; Kubota et al., 2000; Kadokami et al., 2001).
Two TNF� blockers have recently been evaluated in
clinical trials: etanercept (Enbrel), a fusion protein of
the soluble form of the TNFR and the Fc portion of
human immunoglobulin IgG1 and infliximab (Remi-
cade), a chimeric IgG1 monoclonal antibody that con-
tains a murine binding site for TNF�. Despite encour-
aging results in early clinical studies, in which
subcutaneous etanercept administration appeared to be
safe and to result in improvement of cardiac function in
patients with advanced heart failure (Bozkurt et al.,
2001), a large-scale phase II/III trial (RENEWAL) has
recently been prematurely discontinued due to a lack of
benefit (Louis et al., 2001). The introduction of inflix-
imab as a therapy for rheumatoid arthritis, on the other
hand, has been marred by the recent report of a case of
sudden death in a patient without heart failure follow-
ing a single 200 mg infusion (de’ Clari et al., 2002).
Moreover, a phase II clinical trial investigating the use
of infliximab in advanced congestive heart failure has
been placed on hold after the death of seven patients in
the treatment group.

The experience with infliximab, in particular, may
point to a potentially protective effect of TNF� in heart
failure. Thus, TNF� has been found to induce protein
synthesis in cardiac myocytes (Hiraoka et al., 2001) and
to lead to inflammatory autoregulation by means of the
translocation of functionally inactive NF-�B p50 ho-
modimers (Haudek et al., 2001).

In an atherosclerotic context, blockade of TNF� by
administration of soluble TNFR has been found to accel-
erate endothelial recovery after balloon angioplasty of
rat carotid arteries (Krasinski et al., 2001). Because
endothelial damage is thought to be an important pro-
cess in atherogenesis and atherosclerotic plaque erosion,
the inhibition of TNF�-mediated impairment of endo-
thelial function could yield considerable merit. In an
analogous approach, adenovirus-mediated transfer of a
secreted TGF� type II receptor has been demonstrated
to inhibit luminal loss after percutaneous transluminal
coronary angioplasty of porcine coronary arteries (King-
ston et al., 2001). Specific targeting to inflammatory
tissues may refine such gene transfer approaches, as
demonstrated by gene vectors in which the TNFR-IgG
fusion protein sequence has been placed under the con-
trol of a serum amyloid A promoter. Serum amyloid A
levels increase dramatically in inflammatory conditions,
and the plasmid-mediated expression of such a construct
has been shown to be activated in vitro by IL-1� and
TNF� (Rygg et al., 2001). Nonetheless, TNF� also exerts
potentially anti-atherogenic functions, including the in-
hibition of lipoprotein lipase (Tengku-Muhammad et al.,
1996) and the attenuation of macrophage scavenger re-
ceptor activity (van Lenten and Fogelman, 1992; Hsu et
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al., 1996; Schreyer et al., 1996). In addition, TNF� defi-
ciency has no effect on atherogenesis in apoE�/� mice
(Schreyer et al., 2002), whereas TNFR1 deficiency even
predisposes to atherosclerosis (Schreyer et al., 1996). As
is the case with respect to heart failure, controversy thus
still shrouds antagonism of TNF� activity as a treat-
ment for atherosclerosis, which is also borne out by the
fact that administration of TNF-binding protein in
apoE�/� mice attenuates fatty streak formation in fe-
males, whereas it has no effect in male mice (Elhage et
al., 1998).

Virus-encoded interleukin and interleukin receptor
homologs are also thought to function as antigens and
haptens, respectively, in the generation of autoantibod-
ies against a series of interleukins that have been found
to occur naturally in healthy humans and certain dis-
ease states (Bendtzen et al., 1998), including antibodies
against IL-1� (Bendtzen et al., 1989, 1994), IL-6 (Han-
sen et al., 1991; Bendtzen et al., 1994), and IL-10 (Bendt-
zen et al., 1994). The (patho)physiological role of these
antibodies remains somewhat unclear, although most
neutralize their target interleukins in vitro (Svenson et
al., 1992; Hansen et al., 1993, 1995). Several have also
been found to attenuate interleukin activity in vivo, and
anti-cytokine therapy by means of monoclonal antibod-
ies has also been investigated in the context of athero-
sclerosis. An important role has been assigned to
CD40L-CD40 interactions in the pathogenesis of athero-
sclerosis (Mach et al., 1997). Accordingly, treatment
with anti-CD40L antibody reduces de novo atherogene-
sis in atherosclerosis-prone mice (Mach et al., 1998) and
cardiac allograft arteriopathy in a murine heterotopic
cardiac transplant model (Wang et al., 2002) and has
also been found to alter the histological appearance of
pre-existing atherosclerotic lesions toward a more stabi-
lized phenotype (Lutgens et al., 2000; Schonbeck et al.,
2000). By contrast, antibody-mediated neutralization of
TGF� signaling accelerates atherogenesis in apoE�/�
mice, and leads to the development of a more inflamma-
tory plaque phenotype (Mallat et al., 2001c). Despite
being a CD40-inducible protein (Zan et al., 1998), TGF�
thus appears to have anti-atherogenic properties, and
its inhibition would therefore be undesirable in the pre-
vention of atherogenesis.

The chronic nature of atherosclerosis and the gener-
ally rapid clearance of administered antibodies, how-
ever, would necessitate repeated parenteral administra-
tion to ensure prolonged efficacy. Eliciting an
endogenous antibody response by immunization with
the cytokine in question may circumvent this problem. A
humoral immune response has previously been shown to
be mounted against most therapeutically administered
recombinant interleukin preparations (Revoltella,
1998), and this observation has paved the way for the
introduction of intentional interleukin immunization.
Svenson et al. (2000) have immunized mice with recom-
binant murine IL-1� in conjunction with purified pro-

tein derivative of tuberculin, which resulted in the de-
velopment of IL-1� neutralizing autoantibodies that
attenuate the expression of IL-6 in vivo. Alternatively, a
synthetic interleukin receptor antagonist may be used
as an antigen for the induction of autoimmunity against
interleukins, as has been demonstrated for IL-6 (Ciap-
poni et al., 1997), or vaccination may be conducted with
a DNA vaccine encoding antigenic epitopes of the cyto-
kine concerned (Youssef et al., 1998). Thus, rats have
been found to mount a protracted immune response to
Fas ligand after a course of vaccinations with FasL
cDNA (Wildbaum et al., 2000). The resulting autoanti-
bodies inhibited the production of TNF� by cultured T
lymphocytes in vitro and provided protection against
experimental autoimmune encephalomyelitis in vivo.

In considering the therapeutic scope of humoral anti-
interleukin immune response induction, however, one
needs to take into account that some anti-cytokine an-
tibodies have been found to stabilize cytokine functions
rather than solely neutralizing their activity (Bendtzen
et al., 1990; Wendling et al., 1993). Antibodies to IL-3,
IL-4, and IL-7 have thus been demonstrated to form
complexes with their target interleukins, which pro-
longs their in vivo half-life (Finkelman et al., 1993). This
has led to the realization that the efficacy of monoclonal
anti-interleukin therapy constitutes a balance between
the neutralization avidity and the rate of clearance of
the formed complex. These characteristics may partly
depend on the specific epitope recognized by the anti-
body, and meticulous preclinical assessment of complex
clearance is therefore indicated prior to clinical evalua-
tion.

D. Interleukin Receptor Antagonists

Endogenous regulation of interleukin activity also oc-
curs at the level of ligand-receptor interaction. A major
exponent of this type of modulation is the control of IL-1
signaling by the endogenous IL-1 receptor antagonist,
IL-1ra (Arend et al., 1998; Smith, 2000). First discovered
in the 1980s (Arend et al., 1985), this factor has been
extensively studied as a potential anti-inflammatory
compound. Systemic treatment with IL-1ra has been
proven to be beneficial in the treatment of rheumatoid
arthritis in animal models and in humans, as judged by
histological and clinical improvement (Bresnihan et al.,
1998; Cunnane et al., 2001). As discussed above, IL-1ra
has also been suggested as an important protective fac-
tor in atherogenesis (Francis et al., 1999) and restenosis
(Kastrati et al., 2000), and its administration is cur-
rently under scrutiny as a potential anti-atherogenic
therapy. Elhage et al. (1998) have demonstrated that
subcutaneous injection of IL-1ra by means of an osmotic
pump (25 mg/kg/day for 1 month) leads to a significant
reduction in fatty streak formation in the aortic sinus of
apoE�/� mice on an atherogenic diet (Elhage et al.,
1998). Short-term treatment with IL-1ra has been found
to be well tolerated. Due to the central role of IL-1 in the
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immune response, however, long-term systemic treat-
ment with an inhibitor of this factor may not be desir-
able. It is encouraging, therefore, that local gene thera-
peutic approaches involving IL-1ra have provided
promising results in the attenuation of cerebral, pancre-
atic, and articular inflammation in animal models (Yang
et al., 1997; Fernandes et al., 1999; Giannoukakis et al.,
1999) and are currently awaiting evaluation in clinical
trials (Del Vecchio et al., 2001).

In lieu of naturally occurring antagonists, inhibitors
of interleukin receptors have also been developed by
synthetic means. Phage display techniques have led to
the development of AF12198, a 15-mer peptide with
nanomolar affinity for the human type I IL-1 receptor,
which does not bind to the human type II receptor (Ake-
son et al., 1996), and inhibits IL-1-induced ICAM-1 ex-
pression by endothelial cells in vitro. Moreover, it down-
regulates IL-6 induction in cynomolgus monkeys and is
thus considered to be the first small molecule to show
IL-1 receptor antagonist activity in vivo.

In general, the development of small interleukin re-
ceptor antagonists has proved difficult, however, due to
the complex and multipoint high-affinity interactions
between interleukin receptors and their ligands. A more
rewarding strategy has been the mutation of existing
ligands. IL-6 ligand-receptor interaction can be blocked
by IL-6 variants that have been mutated to display
increased affinity for IL-6R and decreased binding to
gp130 (Sun et al., 1997; Devlin et al., 1998; Honemann et
al., 2001). Due to their interference with gp130 interac-
tion, these IL-6 receptor antagonists may also function
as IL-11 antagonists (Sun et al., 1997). IL-12, in its
active form, consists of two disulfide-bonded subunits,
p40 and p35, and synthetic antagonists have been de-
vised for human (Ling et al., 1995) and murine IL-12
(Gillessen et al., 1995) by homodimerization of the IL-12
p40 subunit. The p40 homodimer acts as a potent IL-12
antagonist in vitro, reduces the murine Th1 type re-
sponse to endotoxin in vitro (Gately et al., 1996), and
protects mice from septic shock following LPS injection
(Mattner et al., 1997). Considering the importance that
has been assigned to Th1-mediated processes in athero-
sclerosis, this approach may also hold promise in the
prevention of atherogenesis.

The possibility of attenuating interleukin binding by
introducing a blocking antibody response to its receptor
has also been explored. In vitro, binding of IL-2 to IL-2R
can be inhibited by the addition of humanized antibodies
that are bispecific for anti-IL-2 receptor � and � (Pilson
et al., 1997). In addition to its inhibitory activity on IL-2
signaling, this antibody displays activity against IL-15,
possibly by virtue of competing for the shared IL-2�
receptor subunit. In a monkey model of autoimmune
uveitis, this antibody has been demonstrated to mark-
edly reduce inflammation after twice-weekly intrave-
nous injections for 4 weeks (Guex-Crosier et al., 1997).
Furthermore, antagonism of IL-2 by means of anti-

IL-2R antibodies, including the commercial prepara-
tions basiliximab and dacluzimab, has proven an effec-
tive addition to the immunosuppressive regimen
following renal allograft transplantation (Vincenti et al.,
1998; Onrust and Wiseman, 1999). This therapeutic ef-
ficacy is believed to also be partly due to inhibition of
IL-15-mediated responses (Boelaars-van Haperen et al.,
2001). With respect to other interleukins, antibody
blockade of IL-4R and IL-6R has been found to alleviate
antigen-induced airway hyperresponsiveness and colla-
gen-induced arthritis, respectively (Gavett et al., 1997;
Takagi et al., 1998; Mihara et al., 2001), and antibody
directed at IL-18R reduces LPS-induced inflammation
and mortality in mice (Xu et al., 1998a).

Opsonization and complement activation are believed
to contribute to the mechanism of action of interleukin-
receptor antibodies, and the ensuing elimination of cells
expressing the relevant receptor may attenuate inflam-
matory pathways elicited by interleukin binding. In
analogy, the specificity of interleukin binding has been
employed in devising a “Trojan horse” strategy for the
targeting of cytotoxic compounds. This entails the ad-
ministration of fusion proteins consisting of an interleu-
kin and a toxic polypeptide domain, as used in the trans-
fer of pseudomonas exotoxin to IL-4R-expressing breast
carcinoma cells (LeMaistre et al., 1998) and of diphthe-
ria toxin to IL-2R-expressing lymphomas (Leland et al.,
2000). Significant toxic side effects may limit this type of
therapy to acutely life-threatening and incurable dis-
eases (Bagel et al., 1998). This would almost certainly
exclude atherosclerosis as a candidate ailment, although
it could be applicable in a short-term strategy for the
prevention of restenosis following angioplasty of athero-
sclerotic lesions. Thus, it is interesting to note that
Miller et al. (1996) have found atherosclerotic vascular
thickening in rabbits following aortic balloon angio-
plasty to be reduced by an interleukin-2 receptor-specific
fusion protein, termed DAB486-IL-2, in which the recep-
tor binding domain of diphtheria toxin had been re-
placed by a human IL-2 sequence. DAB486-IL-2 was
administered for 10 days following angioplasty (0.1 mg/
kg/day i.v.), found to be well tolerated for the duration of
the experiment, and to result in complete inhibition of
lesion formation compared with controls.

E. Up-Regulation of Anti-Inflammatory Interleukins

As has been discussed in a previous section, several
interleukins have been ascribed a putative anti-athero-
genic role, including IL-9, IL-10, IL-11, and potentially
IL-4 and IL-13 (Table 1). All of these cytokines are
known to induce a Th2 type cytokine response, and have
been implicated in the pathogenesis of Th2-mediated
diseases (Barnes, 2001a). Consistently, their inhibition
has been suggested as a potential treatment for these
conditions, including asthma (Henderson et al., 2000;
Barnes 2001b; Zhou et al., 2001b). Overexpression of
these interleukins, on the other hand, has been specu-
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lated to ameliorate a variety of Th1-mediated inflamma-
tory conditions, such as rheumatoid arthritis, septic
shock, and atherosclerosis. Their up-regulation may
therefore hold promise as a therapeutic modality in
these diseases, and several studies to this effect have
been reported.

Endotoxin-elicited shock has been used as a model for
the evaluation of the role and the therapeutic potential
of all of these interleukins in Th1-mediated inflamma-
tion. The protective effect of IL-4 has been studied in a
murine model of Gram-negative septic shock following
Pseudomonas aeruginosa infection (Giampietri et al.,
2000). Mortality was found to be reduced by IL-4 treat-
ment, correlating with a decrease in TNF� elaboration.
Similarly beneficial effects have been found after pro-
phylactic injections of recombinant IL-9 in this model
(Grohmann et al., 2000). This effect is accompanied by a
reduction in TNF�, IL-12 p40, and IFN� levels, and
appears to be IL-9-specific, as heat-inactivated IL-9 did
not improve survival rates. Circulating IL-10 levels were
found to be markedly augmented by IL-9 injection, and
this may be partly responsible for an indirect suppres-
sion of proinflammatory cytokine expression, as IL-10
itself also reduces TNF� production and lethality in
murine endotoxemia (Gerard et al., 1993). Conversely,
IL-9 production in mast cells is greatly stimulated by
IL-10, closing a potent positive feedback loop (Stassen et
al., 2000). IL-11, on the other hand, inhibits LPS-in-
duced up-regulation of TNF�, IL-1�, and IFN� by an
IL-10-independent mechanism in vivo, and has been
found to result in a 60% inhibition of LPS-induced elab-
oration of TNF�, IL-1�, IL-12 p40, and nitric oxide by
murine peritoneal macrophages in vitro (Trepicchio et
al., 1997). Moreover, IL-11 reduces lung TNF� levels
and neutrophil sequestration, and improves pulmonary
vasomotor function in a model of LPS-induced lung in-
jury (Sheridan et al., 1999). IL-13 even leads to a para-
doxical decrease in IL-10 levels following intraperitoneal
LPS injection, despite TNF�, IFN�, and IL-12 attenua-
tion, and is therefore also presumed to exert its protec-
tive effect in endotoxemic shock through an IL-10-inde-
pendent pathway (Muchamuel et al., 1997).

The chondroprotective and anti-colitic properties of
anti-inflammatory interleukins have also been evalu-
ated. Locally applied recombinant human IL-4 and
IL-10 attenuated cartilage degradation and mononu-
clear cell activity in human rheumatoid synovium that
had been engrafted subcutaneously to SCID CB17 mice.
Moreover, IL-10, but not IL-4, decreased the expression
of ICAM-1 by synovial cells in this model (Jorgensen et
al., 1998). IL-11 also significantly reduced the severity of
collagen-induced arthritis in mice (Walmsley et al.,
1998), and possibly of rheumatoid arthritis in humans
(Moreland et al., 2001). In a rat model of inflammatory
bowel disease, intraperitoneal adenoviral transfer of
IL-4 has been found to significantly inhibit tissue dam-

age, serum and colon IFN� levels, and myeloperoxidase
activity in the distal colon (Hogaboam et al., 1997).

Surprisingly little is known about the atheroprotec-
tive role of these interleukins, and IL-10 is undoubtedly
the most extensively studied candidate in this respect. A
relative deficiency of IL-10 signaling has been impli-
cated in the pathogenesis of a variety of chronic autoim-
mune conditions, including rheumatoid arthritis,
Crohn’s disease, multiple sclerosis, and psoriasis. Prom-
ising results have been obtained in studies addressing
the therapeutic potential of IL-10 administration in an-
imal models of these diseases (Croxford et al., 1998; Kim
et al., 2000a; Lubberts et al., 2000), and the outcomes of
early clinical trials have been encouraging with respect
to safety and efficacy, but these require confirmation on
a larger scale (van Deventer et al., 1997; Asadullah et
al., 1999; Colombel et al., 2001). The advantageous po-
tential of IL-10 in dampening the inflammatory back-
ground of atherosclerosis is strongly suggested by sev-
eral in vitro and animal studies (Terkeltaub, 1999).
Thus, atherogenesis is decreased in IL-10 transgenic
mice on a high-fat diet, whereas IL-10 knockout (IL-
10�/�) mice display an increased atherogenic tendency
(Pinderski-Oslund et al., 1999), which is ameliorated by
plasmid-mediated transfer of IL-10 (Mallat et al.,
1999b). Furthermore, transfer of bone marrow from
IL-10 transgenic mice to LDLr�/� mice inhibits athero-
sclerosis by altering the phenotype of the resident lym-
phocyte and macrophage populations in the atheroscle-
rotic plaque (Pinderski et al., 2002).

We have recently demonstrated that de novo collar-
induced atherogenesis in LDLr�/� mice (von der
Thüsen et al., 2001b) is inhibited by adenovirus-medi-
ated overexpression of human IL-10 (hIL-10), following
both systemic and local transfer (von der Thüsen et al.,
2001a) (Fig. 5). Although we found overexpression of
hIL-10 to be immunomodulatory, as evidenced by mono-
cyte deactivation, it also resulted in marked serum cho-
lesterol lowering. The anti-atherogenic effect of systemic
hIL-10 may therefore be considered to be bipartite in
this hypercholesterolemic animal model. Local immuno-
modulation, however, is thought to be solely responsible
for the attenuation of atherosclerotic plaque formation
(44.9%, P � 0.05) that was observed after in vivo endo-
thelial hIL-10 transduction with the same vector. We
have used a similar approach in the evaluation of IL-9 as
an atheroprotective agent and found daily injections of
IL-9 protein (1 �g/mouse/day i.p.) for 5 weeks to reduce
carotid collar-induced atherosclerosis by 65% in
LDLr�/� (P � 0.01) (Kuiper et al., 2001). An explana-
tion for this finding may lie in the IL-9-mediated up-
regulation of inhibitors of interleukin signaling, in ad-
dition to its enhancement of IL-10 production (Lejeune
et al., 2001).

The atheroprotective nature of IL-10 cannot be con-
sidered to be a foregone conclusion, as local injection of
an IL-10 expression plasmid inhibits angiogenesis in a
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mouse model of hindlimb ischemia (Silvestre et al.,
2000), and administration of IL-10 protein augments
arterial disease in murine heart transplants (Furukawa
et al., 1999). The effect of IL-10 application, as a protein
or following gene transfer, may eventually be found to
depend on the stage of the disease, the mode of transfer
and the dosing regimen. Furthermore, it may be possible
to tailor the pleiotropic actions of IL-10 to the use as an
anti-atherogenic agent by the use of viral IL-10 ho-
mologs. Thus, the Epstein-Barr virus BRCF-1 gene
product (vIL-10) has been found to share 84% amino acid
sequence identity but only a limited number of the pleio-
tropic actions of hIL-10. Perhaps most importantly, it
lacks the immunostimulatory properties of human IL-
10, while sharing its inhibitory activity with respect to
cytokine synthesis and macrophage activation (Ding et
al., 2000). Furthermore, vIL-10 has been found to lead to
augmented and more prolonged expression following ad-
enovirus-mediated transfer in mice in comparison with
its human counterpart (Minter et al., 2001), and to ef-
fectively reduce endothelial expression of E-selectin, P-
selectin, and ICAM-1 in rats following adenovirus-medi-
ated transfer (Henke et al., 2000). The application of
vIL-10 may eventually prove to be preferable to hIL-10 if
treatment is primarily aimed at providing an anti-in-
flammatory stimulus, as is the case in the prevention of
atherosclerosis.

F. Inhibition of Interleukin Signaling

The effector functions of all interleukins depend on
the activation of intracellular signaling cascades involv-
ing, inter alia, Jaks, Tyks, and STATs (Leonard and Lin,

2000; Touw et al., 2000). These pathways are negatively
regulated by endogenous signaling inhibitors, including
the SH2-containing phosphatase, SOCS, and protein in-
hibitor of activated STAT families (Chung et al., 1997;
Starr et al., 1997; Liu et al., 1998; Naka et al., 1999), of
which the expression is partly controlled by interleukins
themselves. These are considered to play a pivotal role
in the cross-regulation of interleukin function, as Th2
cytokines have been found to lead to the expression of
negative regulators of Th1 cytokines, and vice versa.
Moreover, interleukins may also up-regulate inhibitors
of their own signaling cascades and are therefore subject
to negative feedback loops. Thus, IL-4 activity is con-
trolled by SOCS-1 (SSI-1), which is elaborated in re-
sponse to interferons as well as IL-4 itself (Naka et al.,
1997; Dickensheets et al., 1999; Losman et al., 1999),
and the immunosuppressive and autoregulatory effects
of IL-9, IL-10, and IL-11 are thought to be partly medi-
ated by the up-regulation of SOCS-3, which inhibits
STAT5-mediated signaling (Auernhammer and
Melmed, 1999; Cassatella et al., 1999; Donnelly et al.,
1999; Lejeune et al., 2001).

The administration of inhibitors of cytokine signaling
could have beneficial effects in atherosclerosis. The es-
sential role of tyrosine kinases in cytokine signaling has
prompted the evaluation of tyrosine kinase inhibitors as
therapeutic agents. In this respect, a group of com-
pounds called “tyrphostins” has been shown to have
anti-proliferative and anti-inflammatory properties in
vitro and in vivo that are thought to be mediated by
tyrosine kinase inhibition (Levitzki, 1990). Platelet-de-
rived growth factor is among the cytokines to be inhib-

FIG 5. Effects of adenovirus-mediated gene transfer of the anti-inflammatory cytokine IL-10 on atherogenesis in LDLr�/� mice. Both systemic
(hepatic) (A–C) and local (endothelial) (D–F) overexpression result in a decrease in atherosclerotic plaque surface area and complexity, which is
reflected by a marked attenuation of the degree of stenosis (C�F) �, P � 0.05; ��, P � 0.02. Adapted from von der Thüsen et al., 2001a.
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ited by the tyrphostins, and these have therefore been
speculated to be effective against smooth muscle cell-
mediated pathological processes. The latter includes in-
jury-induced neointima formation, and application of
the tyrphostin AG-17 by means of a perivascular con-
trolled release implant has been found to inhibit intimal
hyperplasia in injured rat carotid arteries (Golomb et
al., 1996). In addition, Huynh et al. (1998) have found ex
vivo incubation of jugular veins with AG-51 to reduce
post-operative intimal hyperplasia by 49%, following
their placement as an interposition graft in rabbit ca-
rotid arteries. A relative lack of pharmacological and
functional selectivity, however, may limit the applicabil-
ity of these inhibitors as immunomodulatory compounds
aimed at diverting the cytokine response from a Th1 to
a Th2 expression pattern. SB 203580, for example, in
addition to its originally described inhibitory activity for
p38 MAPK, also attenuates stress-activated protein ki-
nases and c-Jun N-terminal kinases (Cuenda et al.,
1995; Clerk and Sugden, 1998). SB 203580 inhibits TNF
and IL-1 expression and protects mice from collagen-
induced arthritis (Owens and Lumb, 2000) but also at-
tenuates IL-4, IL-5, and IL-13, and virtually blocks
IL-10 production (Koprak et al., 1999). The latter effect,
in particular, is considered undesirable in the setting of
atherosclerosis. It is conceivable, however, that specific-
ity of protein kinase inhibition may in the future be
achieved by the transfer of endogenous inhibitors, in-
cluding SOCSs by gene therapy or protein administra-
tion. As an example, plasmid-mediated overexpression
of SOCS-1 has recently been found to inhibit cytokine-
induced CD40 expression in macrophages by blocking
IFN�-mediated STAT-1� activation (Wesemann et al.,
2002).

G. Inhibition of Interleukin-Induced Gene Expression

Interleukin signaling eventually culminates in the se-
quence-specific binding of DNA by activated transcrip-
tion factors and the ensuing up-regulation of target gene
transcription. Some of these transcription factors are
considered potentially rewarding substrates for immu-
nomodulatory therapy, including NF-�B, AP-1 and the
STAT proteins, by virtue of their capacity to integrate
converging signals from various proinflammatory cyto-
kines and other inflammatory stimuli (Collins, 1993;
Touw et al., 2000; Tedgui and Mallat, 2001). Several
methods have been employed in the attenuation of tran-
scription factor activity, based on the characteristic
bispecific affinity of these molecules for regulatory pro-
teins and DNA.

The inhibition of vascular NF-�B-regulated transcrip-
tion, in particular, is presumed to hold anti-atherogenic
potential. Activated NF-�B has been identified in
smooth muscle cells, macrophages, and endothelial cells
in the atherosclerotic lesion (Brand et al., 1996). Func-
tional significance for NF-�B in atherogenesis has been
deduced from its colocalization with the expression of

NF-�B target genes in plaques (Brand et al., 1996) and
the association of its expression in coronary atheroscle-
rotic lesions with unstable angina (Wilson et al., 2002).
The role of NF-�B as a causal mediator in atherosclero-
sis remains unclear, however, which is partly due to the
intrauterine lethality associated with p65- and I�B�-
deficiency in mice (Collins and Cybulsky, 2001). The
regulation of NF-�B activity depends on the extent of
binding to its naturally occurring inhibitors, including
I�B�, I�B�, I�B�, and BCL3 (Ghosh and Baltimore,
1990; Finco and Baldwin, 1995). Phosphorylation of I�B
by the I�B kinase (IKK) complex, containing IKK�,
IKK�, and IKK� (NEMO), leads to I�B ubiquitination
and proteasome-mediated degradation. This enables the
nuclear translocation of unbound NF-�B and subse-
quent activation of NF-�B-dependent transcription. In
endothelial cells, NF-�B is thought to play an essential
role in the regulation of adhesion molecule expression in
response to inflammatory stimuli, including cytokines
(Collins et al., 1995; De Caterina et al., 2001). The en-
dothelial NF-�B/I�B system is presumed to be primed in
endothelial cells in lesion-prone arterial sites, as evi-
denced by increased expression of the p65 (RelA) NF-�B
subunit, I�B�, and I�B�, prior to plaque development
and NF-�B activation (Hajra et al., 2000). The attenua-
tion of I�B activity by IKK up-regulation has been iden-
tified as a pivotal step in endothelial activation (Read et
al., 1994; Bennett et al., 1996; Johnson et al., 1996),
whereas the inhibition of endothelial adhesion molecule
expression by nitric oxide has been found to be mediated
by I�B� (Spiecker et al., 1997). The recognition of the
physiological importance of this inhibitory pathway has
prompted the evaluation of the anti-atherogenic proper-
ties of I�B� administration. Adenoviral transfer of I�B�
has thus been found to effect down-regulation of inflam-
matory genes in endothelial cells, including VCAM-1,
IL-1, IL-6, and IL-8 (Wrighton et al., 1996), and to lead
to inhibition of monocyte adhesion and transmigration
on TNF�-activated endothelium (Weber et al., 1999). In
addition, TNF�-induced endothelial expression of adhe-
sion molecules (E-selectin and ICAM-1) and chemokines
(MCP-1) is attenuated by retrovirus-mediated introduc-
tion of a proteolysis-resistant I�B� mutant, I�B�N, and
the addition of pharmacological inhibitors of I�B� phos-
phorylation and proteasome degradation (Cobb et al.,
1996; Pierce et al., 1997; Lockyer et al., 1998; Hipp et al.,
2002).

NF-�B may also modulate atherogenesis by regulat-
ing the transcription of inflammatory genes in mono-
cytes/macrophages and smooth muscle cells (Ghosh and
Baltimore, 1990; Bourcier et al., 1997). In macrophages,
the LPS-stimulated production of proinflammatory cy-
tokines and inducible nitric-oxide synthase (iNOS) have
been found to be reduced by adenoviral overexpression
of I�B� and the administration of proteasome inhibitors,
respectively (Griscavage et al., 1996; Bondeson et al.,
1999). In vascular smooth muscle cells, liposomal deliv-
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ery of purified I�B� peptide attenuates TNF�-induced
proliferation (Selzman et al., 1999), and overexpression
of I�B� diminishes the elaboration of the matrix metal-
loproteinases MMP-1, MMP-3, and MMP-9, which may
have plaque-stabilizing consequences in vivo (Bond et
al., 2001). In addition, decoy oligonucleotides to NF-�B
binding sites have been used to counteract NF-�B-me-
diated transcriptional activation and have displayed ef-
fectivity in inhibiting graft coronary artery disease of rat
cardiac allografts following ex vivo pressure-mediated
delivery (Feeley et al., 2000). Other interleukin-acti-
vated transcription factors to have been successfully
inhibited in vitro by the decoy approach include STAT1
(Ohtsubo et al., 2000), STAT6 (Wang et al., 2000), and
AP-1 (Morishita et al., 1998). Inhibition of AP-1-medi-
ated transcription, in particular, effectively reduced
joint destruction in a murine model of collagen-induced
arthritis (Shiozawa et al., 1997).

Attenuation of NF-�B activity is also presumed to
constitute a physiological feedback mechanism in in-
flammatory homeostasis. Thus, several potentially anti-
atherogenic interleukins reduce NF-�B activity by vari-
ably increasing I�B� transcription (IL-4) (Donnelly et
al., 1993; Abu-Amer, 2001), preventing I�B degradation
(IL-10 and IL-13) (Lentsch et al., 1997) or increasing the
expression of BCL3, a protein with close homology to I�B
proteins (IL-4 and IL-9) (Richard et al., 1999). Interest-
ingly, NF-�B inhibition has evolved as a viral strategy of
immune response evasion, exemplified by the adenovi-
rus-encoded E1A protein (Kalvakolanu, 1999). The up-
regulation of IL-6 by TNF� and IL-1 is inhibited by E1A
due to its prevention of NF-�B p65-p50 heterodimer
formation; although this leaves monomeric p50 to bind
to the �B element in the IL-6 promoter, this does not
induce transcription (Janaswami et al., 1992). Moreover,
E1A negatively regulates Stat1, Stat2, and Stat3 activ-
ity, and thereby attenuates IL-6-mediated gene expres-
sion (Takeda et al., 1994). An I�B homolog, A238L, is
encoded by the African swine fever virus, and this has
been shown to inhibit the production of proinflammatory
cytokines in macrophages, allowing persistent viral in-
fection (Powell et al., 1996). It may prove possible to
exploit these anti-inflammatory traits in the prevention
of atherogenesis by overexpression or protein adminis-
tration of the interleukins or viral proteins concerned.

Synthetic compounds with inhibitory activity for
NF-�B have also been described. High throughput cell-
based screening has led to the discovery of SP100030, a
T cell-specific NF-�B and AP-1 inhibitor (Gerlag et al.,
2000). SP100030 attenuates IL-2, IL-8, and TNF� pro-
duction in T cell lines and alleviates disease progression
in a murine model of collagen-induced arthritis. Finally,
it has recently transpired that the pharmacological ef-
fects of several anti-inflammatory compounds, including
salicylates, are partly derived from their inhibition of
I�B phosphorylation and degradation (Schwenger et al.,
1998; Young, 1998). This knowledge may aid the devel-

opment of derivatives of these drugs that are specifically
targeted toward the inhibition of cytokine-induced in-
flammation.

Once interleukin-mediated transcription of inflamma-
tory genes has occurred, antisense technology could be
employed to interfere specifically with their translation.
Interleukin-1 stimulated up-regulation of granulocyte-
macrophage and granulocyte colony-stimulating factor
gene expression in endothelial cells has been success-
fully inhibited by antisense ODNs (Segal et al., 1992).
Moreover, the expression of endothelial adhesion mole-
cules can be inhibited by the application of phosphoro-
thioate oligonucleotides directed against ICAM-1,
VCAM-1, and E-selectin (Bennett et al., 1994). Anti-
sense-mediated down-regulation of endothelial ICAM-1
expression on monocytes reduces endothelial adhesive-
ness for leukocytes, which may be advantageous in
atherogenesis (Steidl et al., 2000). The applicability of
ICAM-1 inhibition by means of antisense has been dem-
onstrated in vivo, as it has been shown to be effective in
the prevention of cardiac allograft or lung isograft fail-
ure in mice and rats, respectively (Stepkowski et al.,
1994; Toda et al., 2000). In clinical studies, the phospho-
rothioate ICAM-1 antisense preparation ISIS 2302 has
been found to be well tolerated and to significantly lower
the need for steroid treatment in Crohn’s disease (Yacy-
shyn et al., 1998).

The previously mentioned caveats that apply to anti-
sense therapy in general (Lebedeva and Stein, 2001) are
evidently also poignant with respect to its use in the
inhibition of interleukin-induced gene expression. The
doubts that have been raised about the sequence-specific
nature of ODN-mediated effects, the poor transfection
efficiency, and the short half-life of ODNs in vivo will
need to be addressed to warrant their applicability in
the prevention of atherosclerosis.

IV. Discussion

Cytokines are being increasingly recognized as a po-
tentially rewarding therapeutic target in a wide variety
of diseases. For example, of the over 600 clinical gene
therapy trials currently completed, ongoing or pending
worldwide, those concerned with the transfer of cytokine
genes constitute the largest category (Gene Therapy
Clinical Trials, 2002). Most of these involve the applica-
tion of immunostimulatory cytokines for the treatment
of neoplastic and infectious diseases. Of the protocols
addressing vascular diseases (51 in total), the over-
whelming majority is intended to stimulate revascular-
ization in peripheral and coronary ischemia by cytokine
overexpression, largely employing the angiogenic
growth factors fibroblast growth factor, PDGF, and vas-
cular endothelial growth factor. While these hold prom-
ise for the treatment of atherosclerosis-related ischemia,
it will have transpired from the preceding discussion
that cytokine-directed therapy in general, and interleu-
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kin-based treatment specifically, is still in its infancy as
a means for the prevention of the onset and progression
of atherogenesis per se. A lack of understanding of their
involvement in atherogenesis currently prevents the use
of some interleukins as targets for immunomodulation,
including the members of the IL-10 family IL-19, IL-20,
and IL-22 (Table 1). Other interleukins are overtly pleio-
tropic in their actions, and attenuating or augmenting
their effects may be detrimental or beneficial, depending
on the stage of atherosclerosis (IL-4, IL-13). Yet others
have been attributed primarily anti- (IL-1ra, IL-9, IL-11,
IL-10) or pro-atherogenic (including IL-1, IL-2, IL-6, IL-
18) properties, and their modulation could therefore rep-
resent the most readily applicable approach to immuno-
therapy in atherosclerosis. This type of therapy may
prove to be an effective alternative to currently used
treatment protocols (e.g., lipid-lowering drugs) but could
also be useful as an adjunctive to conventional pharma-
cotherapy. It is possible to conceive of several obstacles
that may have impeded the development of such immu-
nomodulatory strategies. Some of these are related to
specific pathogenic features associated with atheroscle-
rosis, others to the systemic and local consequences of
immunomodulation, and yet others to purely technical
aspects of interleukin therapy.

The chronic nature of atherosclerosis has doubtlessly
hampered the evolution of adequate disease prevention
strategies in general and also remains a significant ob-
stacle to the preventive use of interleukin-based treat-
ments. In considering the relative benefit of long-term
use of the latter, one needs to pay attention to its cost,
the practicality of its dosing regimen, and, most impor-
tantly, potential side effects.

All interleukins possess roles that are certainly not
restricted to atherosclerosis, and their actions are fre-
quently pivotal to several aspects of the immune system.
Interleukins orchestrate defense mechanisms against a
wide range of pathogens and tumor cells, in addition to
playing a key role in various forms of nonimmune in-
flammation, and undiscerning diversions of the interleu-
kin response will therefore invariably compromise one
or more of these functions. For instance, whereas the
inhibition of signaling by IL-2, IL-6, and IL-12 may be
beneficial in the context of atherosclerosis, these factors
have been implicated as potent antitumor agents (Maini
et al., 1997), and attenuation of IL-2 signaling, in par-
ticular, may increase the risk of neoplasia. Conversely,
Th2 cytokines are considered to have anti-atherogenic
potential, but their role in the pathogenesis of autoim-
mune diseases is also well documented. Prolonged up-
regulation of these factors, although tolerable in the
short-term, may have deleterious consequences for the
development or progression of inter alia, asthma, diabe-
tes mellitus, systemic lupus erythematosus, and rheu-
matoid arthritis (Lafaille, 1998; Romagnani, 2000).
Thus, whereas inhibition of atherogenesis in murine
models has been achieved by application of the IL-1

antagonist IL-1ra (Elhage et al., 1998), the anti-inflam-
matory interleukin IL-10 (von der Thüsen et al., 2001a),
and the interleukin-binding protein IL-18bp (Mallat et
al., 2001b), these treatments still require long-term tox-
icological evaluation before beginning clinical trials.
This type of untargeted systemic immunomodulation
may eventually be limited to short-term treatments
aimed at, for instance, the induction of regression or
stabilization of existing atherosclerotic plaques. Proof-
of-principle data to this effect have been obtained in
ApoE�/� mice, in which the administration of antibod-
ies to the cytokine CD40L has been seen to result in a
stabilized plaque phenotype (Lutgens et al., 2000;
Schonbeck et al., 2000). These studies indicate the po-
tential benefits of short-term immunomodulatory treat-
ment, and could serve as a paradigm for the develop-
ment of similar strategies in humans.

For prolonged treatment, it may be desirable to re-
strict the action radius of therapeutic compounds to the
atherosclerotic lesion and/or to ensure specificity of ac-
tion for the atherosclerotic process. This will require the
identification of marker molecules and cytokine signal-
ing pathways, which are more or less specific for athero-
sclerosis, and these efforts may be greatly aided by the
advent of DNA array and phage display technology
(Faber et al., 2001; Houston et al., 2001; Monajemi et al.,
2001). Thus, employing phage display techniques, we
have recently identified a peptide sequence that specif-
ically binds human P-selectin (Molenaar et al., 2001).
This adhesion molecule is up-regulated on the endothe-
lium of atherosclerosis-prone sites, and high affinity li-
gands for P-selectin may therefore serve as efficient
tools for the targeting of viral and nonviral drug delivery
vehicles to the developing atherosclerotic plaque. Such
techniques may eventually also be extended to the tar-
geting of specific cellular subsets in the atherosclerotic
lesion to enhance therapeutic efficacy and reduce the
risk of bystander effects.

Alternatively, site-directed targeting could be
achieved by mechanical means. The development of local
application catheters has recently been intensified,
opening up possibilities for the intravascular instillation
of therapeutic compounds. Due to the invasive nature of
such techniques, this approach will demand prepara-
tions with an extended duration of action or therapeu-
tics that have a lasting effect on atherogenesis or reste-
nosis even with a single dosage regimen. Viral
expression vectors may be used in achieving prolonged
up-regulation of anti-inflammatory interleukins, such
as (v)IL-10 (Kim et al., 2000a; Minter et al., 2001; von
der Thüsen et al., 2001a), interleukin antagonists, such
as IL-1ra and soluble TNF receptor (Giannoukakis et al.,
1999; Kim et al., 2001), inhibitors of NF-�B signaling,
such as I�B� (Wrighton et al., 1996; Bondeson et al.,
1999; Weber et al., 1999), and antisense oligonucleotides
and ribozymes directed against proinflammatory inter-
leukins and interleukin-induced genes. Although ex-
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tended transgene expression has been found to occur
with some adenoviruses, including Ad-IL-10 (�200 days,
unpublished data), the use of AAVs or Ad/AAV hybrids
may be preferable in accomplishing this goal (Lynch et
al., 1997; Recchia et al., 1999; Monahan and Samulski,
2000).

Barring the development of preparations with an ex-
tended duration of action, however, repeated adminis-
tration will continue to be required to sustain therapeu-
tic efficacy. This may elicit a humoral response to the
protein concerned, which could severely compromise its
potency and aggravate side effects. A further drawback
of repeated administration is the fact that most cur-
rently available preparations require parenteral admin-
istration, which limits their tolerability and thus the
likelihood of patient compliance. Paradoxically, to re-
duce the need for repeated administration, it may be
possible to induce long-term immunomodulation by de-
liberately opting for active immunization by viral or
nonviral means. The possibility of (DNA) vaccination as
a method of raising neutralizing antibody responses
against inflammatory interleukins has been discussed
(Revoltella, 1998; Svenson et al., 2000), as has the pos-
sibility of interleukin stabilization and half-life exten-
sion by these antibodies (Finkelman et al., 1993). It
should be noted, however, that extended duration of
effectivity could also be regarded as a disadvantage, due
to the relative irreversibility of such therapies in case of
the occurrence of deleterious side effects.

The use of smaller synthetic compounds may reduce
the need for parenteral administration and could there-
fore constitute a practical alternative to the transfer of
entire interleukin molecules or anti-interleukin (recep-
tor) antibodies. The examples discussed in this review
include inhibitors of interleukin processing (Livingston,
1997), tyrosine kinase activity (Golomb et al., 1996;
Huynh et al., 1998), proteasome function (Bondeson et
al., 1999; Richard et al., 1999), p38 MAPK (Cuenda et
al., 1995; Clerk and Sugden, 1998), and NF-�B (Gerlag
et al., 2000). A drawback of many of these drugs, how-
ever, is their lack of pharmacological and functional
specificity, partly due to the involvement of their molec-
ular targets as downstream mediators in convergent
signaling cascades, which is perhaps best exemplified by
NF-�B. Careful toxicological evaluation will therefore be
required before their clinical introduction. The use of
(modified) endogenous inhibitors, including SH2-con-
taining phosphatase, SOCS, and protein inhibitor of ac-
tivated STAT, may eventually provide the required se-
lectivity.

The production of interleukins and most of their in-
hibitors is currently a rather costly undertaking. De-
spite recent progress in recombinant protein production
technology and therapeutic antibody expression technol-
ogy (Maini et al., 1997), this situation is unlikely to
change in the foreseeable future, making widespread
prophylactic protein treatment prohibitively expensive.

With a view to these health economic implications and
the minimization of potential side effects, it is impera-
tive that treatment be confined to susceptible patients.
Accurate tools for the identification of patients who may
benefit most from such therapies, are therefore required.
Refinement of genetic, biochemical, and radiological
markers of predisposition to (complications of) athero-
sclerosis may provide important prognostic clues. The
discovery of correlations between atherosclerotic events
and interleukin-related polymorphisms, in particular,
including those found for IL-1 (Momiyama et al., 2001),
IL-ra (Francis et al., 1999, 2001; Kastrati et al., 2000),
and IL-6 (Rauramaa et al., 2000; Georges et al., 2001),
may facilitate the identification of suitable patients,
whereas improved magnetic resonance imaging and ul-
trasound imaging of existing plaques will provide an
impetus for the noninvasive determination of plaque
“vulnerability” to rupture (Fayad and Fuster, 2001;
Choudhury et al., 2002).

In summary, the currently available methods of mod-
ulation of interleukin-mediated inflammatory pathways
are not yet suited to the widespread prevention of ath-
erosclerosis. Substantial investigative efforts are still
required with respect to target identification and the
definition of suitable patient populations. Technical as-
pects of compound specificity, duration of action, and
mode of transfer await additional improvement, but the
first promising signs are looming on the horizon, be-
cause several techniques have been successfully vali-
dated in animal models. The initial aims of such thera-
pies are likely to include the lasting stabilization of
pre-existing plaques by short-term cytokine immuno-
modulation, which possibly represents the most readily
achievable objective in clinical practice in the near fu-
ture.
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 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


production by human monocytes of interleukin 1 or an interleukin 1 inhibitor.
J Immunol 134:3868–3875.

Arend WP, Malyak M, Guthridge CJ, and Gabay C (1998) Interleukin-1 receptor
antagonist: role in biology. Annu Rev Immunol 16:27–55.

Arend WP, Welgus HG, Thompson RC, and Eisenberg SP (1990) Biological proper-
ties of recombinant human monocyte-derived interleukin 1 receptor antagonist.
J Clin Investig 85:1694–1697.

Asadullah K, Docke WD, Ebeling M, Friedrich M, Belbe G, Audring H, Volk HD, and
Sterry W (1999) Interleukin 10 treatment of psoriasis: clinical results of a phase 2
trial. Arch Dermatol 135:187–192.

Auernhammer CJ and Melmed S (1999) Interleukin-11 stimulates proopiomelano-
cortin gene expression and adrenocorticotropin secretion in corticotroph cells:
evidence for a redundant cytokine network in the hypothalamo-pituitary-adrenal
axis. Endocrinology 140:1559–1566.

Awane M, Andres PG, Li DJ, and Reinecker HC (1999) NF-kappa B-inducing kinase
is a common mediator of IL-17-, TNF-alpha- and IL-1 beta-induced chemokine
promoter activation in intestinal epithelial cells. J Immunol 162:5337–5344.

Bagel J, Garland WT, Breneman D, Holick M, Littlejohn TW, Crosby D, Faust H,
Fivenson D, and Nichols J (1998) Administration of DAB389IL-2 to patients with
recalcitrant psoriasis: a double-blind, phase II multicenter trial. J Am Acad
Dermatol 38:938–944.

Barks JL, McQuillan JJ, and Iademarco MF (1997) TNF-alpha and IL-4 synergisti-
cally increase vascular cell adhesion molecule-1 expression in cultured vascular
smooth muscle cells. J Immunol 159:4532–4538.

Barnes PJ (2001a) Th2 cytokines and asthma: an introduction. Respir Res 2:64–65.
Barnes PJ (2001b) Cytokine-directed therapies for asthma. J Allergy Clin Immunol

108:S72–S76.
Barton BE, Shortall J, and Jackson JV (1996) Interleukins 6 and 11 protect mice

from mortality in a staphylococcal enterotoxin-induced toxic shock model. Infect
Immun 64:714–718.

Beasley D, McGuiggin ME, and Dinarello CA (1995) Human vascular smooth muscle
cells produce an intracellular form of interleukin-1 receptor antagonist. Am J
Physiol 269:C961–C968.

Bendtzen K, Hansen MB, Diamant M, Ross C, and Svenson M (1994) Naturally
occurring autoantibodies to interleukin-1 alpha, interleukin-6, interleukin-10 and
interferon-alpha. J Interferon Res 14:157–158.

Bendtzen K, Hansen MB, Ross C, and Svenson M (1998) High-avidity autoantibodies
to cytokines. Immunol Today 19:209–211.

Bendtzen K, Svenson M, Fomsgaard A, and Poulsen LK (1989) Native inhibitors
(autoantibodies) of IL-1 alpha and TNF. Immunol Today 10:222.

Bendtzen K, Svenson M, Jonsson V, and Hippe E (1990) Autoantibodies to cyto-
kines—friends or foes? Immunol Today 11:167–169.

Bennett BL, Lacson RG, Chen CC, Cruz R, Wheeler JS, Kletzien RF, Tomasselli AG,
Heinrikson RL, and Manning AM (1996) Identification of signal-induced IkappaB-
alpha kinases in human endothelial cells. J Biol Chem 271:19680–19688.

Bennett CF, Condon TP, Grimm S, Chan H, and Chiang MY (1994) Inhibition of
endothelial cell adhesion molecule expression with antisense oligonucleotides.
J Immunol 152:3530–3540.

Bermudez EA, Rifai N, Buring JE, Manson JE, and Ridker PM (2002) Relation
between markers of systemic vascular inflammation and smoking in women. Am J
Cardiol 89:1117–1119.

Bertini R, Sironi M, Martin-Padura I, Colotta F, Rambaldi S, Bernasconi S, Ghezzi
P, Haskill SJ, Liu D, and Mantovani A (1992) Inhibitory effect of recombinant
intracellular interleukin 1 receptor antagonist on endothelial cell activation. Cy-
tokine 4:44–47.

Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS, and Gimbrone MA (1985)
Interleukin 1 acts on cultured human vascular endothelium to increase the adhe-
sion of polymorphonuclear leukocytes, monocytes and related leukocyte cell lines.
J Clin Investig 76:2003–2011.

Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ,
Stocking KL, Reddy P, Srinivasan S, et al. (1997) A metalloproteinase disintegrin
that releases tumour-necrosis factor-alpha from cells. Nature (Lond) 385:729–733.

Blankenberg S, Rupprecht HJ, Bickel C, Espinola-Klein C, Rippin G, Hafner G,
Ossendorf M, Steinhagen K, and Meyer J (2001) Cytomegalovirus infection with
interleukin-6 response predicts cardiac mortality in patients with coronary artery
disease. Circulation 103:2915–2921.

Blankenberg S, Tiret L, Bickel C, Peetz D, Cambien F, Meyer J, and Rupprecht HJ
(2002) Interleukin-18 is a strong predictor of cardiovascular death in stable and
unstable angina. Circulation 106:24–30.

Blum A, Sclarovsky S, and Shohat B (1995) T lymphocyte activation in stable angina
pectoris and after percutaneous transluminal coronary angioplasty. Circulation
91:20–22.

Bochner BS, Klunk DA, Sterbinsky SA, Coffman RL, and Schleimer RP (1995) IL-13
selectively induces vascular cell adhesion molecule-1 expression in human endo-
thelial cells. J Immunol 154:799–803.

Bochner BS, Luscinskas FW, Gimbrone MA, Newman W, Sterbinsky SA, Derse-
Anthony CP, Klunk D, and Schleimer RP (1991) Adhesion of human basophils,
eosinophils and neutrophils to interleukin 1-activated human vascular endothelial
cells: contributions of endothelial cell adhesion molecules. J Exp Med 173:1553–
1557.

Boelaars-van Haperen MJAM, Baan CC, van Riemsdijk IC, Ijzermans JNM, and
Weimar W (2001) Treatment with the chimeric anti-IL-2R alpha basiliximab
affects both the IL-2 and IL-15 signalling pathways after clinical kidney trans-
plantation. Transplant Proc 33:1007–1008.

Bogdan C, Thuring H, Dlaska M, Rollinghoff M, and Weiss G (1997) Mechanism of
suppression of macrophage nitric oxide release by IL-13: influence of the macro-
phage population. J Immunol 159:4506–4513.

Bogdan C, Vodovotz Y, and Nathan C (1991) Macrophage deactivation by interleukin
10. J Exp Med 174:1549–1555.

Boisvert WA, Santiago R, Curtiss LK, and Terkeltaub RA (1998) A leukocyte homo-
logue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in

atherosclerotic lesions of LDL receptor-deficient mice. J Clin Investig 101:353–
363.

Bond M, Chase AJ, Baker AH, and Newby AC (2001) Inhibition of transcription
factor NF-kappa B reduces matrix metalloproteinase-1, -3 and-9 production by
vascular smooth muscle cells. Cardiovasc Res 50:556–565.

Bondeson J, Browne KA, Brennan FM, Foxwell BM, and Feldmann M (1999) Selec-
tive regulation of cytokine induction by adenoviral gene transfer of IkappaBalpha
into human macrophages: lipopolysaccharide-induced, but not zymosan-induced,
proinflammatory cytokines are inhibited, but IL-10 is nuclear factor-kappaB in-
dependent. J Immunol 162:2939–2945.

Bonecchi R, Facchetti F, Dusi S, Luini W, Lissandrini D, Simmelink M, Locati M,
Bernasconi S, Allavena P, Brandt E, et al. (2000) Induction of functional IL-8
receptors by IL-4 and IL-13 in human monocytes. J Immunol 164:3862–3869.

Born TL, Morrison LA, Esteban DJ, VandenBos T, Thebeau LG, Chen N, Spriggs
MK, Sims JE, and Buller RM (2000) A poxvirus protein that binds to and inacti-
vates IL-18 and inhibits NK cell response. J Immunol 164:3246–3254.

Bourcier T, Sukhova G, and Libby P (1997) The nuclear factor kappa-B signaling
pathway participates in dysregulation of vascular smooth muscle cells in vitro and
in human atherosclerosis. J Biol Chem 272:15817–15824.

Bozkurt B, Torre-Amione G, Warren MS, Whitmore J, Soran OZ, Feldman AM, and
Mann DL (2001) Results of targeted anti-tumor necrosis factor therapy with
etanercept (ENBREL) in patients with advanced heart failure. Circulation 103:
1044–1047.

Bozza M, Bliss JL, Dorner AJ, and Trepicchio WL (2001) Interleukin-11 modulates
Th1/Th2 cytokine production from activated CD4(�) T cells. J Interferon Cytokine
Res 21:21–30.

Bradham WS, Bozkurt B, Gunasinghe H, Mann D, and Spinale FG (2002) Tumor
necrosis factor-alpha and myocardial remodeling in progression of heart failure: a
current perspective. Cardiovasc Res 53:822–830.

Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, Kaltschmidt
C, Baeuerle PA, and Neumeier D (1996) Activated transcription factor nuclear
factor-kappa B, is present in the atherosclerotic lesion. J Clin Investig 97:1715–
1722.

Braun M, Pietsch P, Felix SB, and Baumann G (1995) Modulation of intercellular
adhesion molecule-1 and vascular cell adhesion molecule-1 on human coronary
smooth muscle cells by cytokines. J Mol Cell Cardiol 27:2571–2579.

Braunstein JB, Cheng A, Cohn G, Aggarwal M, Nass CM, and Blumenthal RS (2001)
Lipid disorders—justification of methods and goals of treatment. Chest 120:979–
988.

Bresnihan B, Alvaro-Gracia JM, Cobby M, Doherty M, Domljan Z, Emery P, Nuki G,
Pavelka K, Rau R, Rozman B, et al. (1998) Treatment of rheumatoid arthritis with
recombinant human interleukin-1 receptor antagonist. Arthritis Rheum 41:2196–
2204.

Brizzi MF, Formato L, Dentelli P, Rosso A, Pavan M, Garbarino G, Pegoraro M,
Camussi G, and Pegoraro L (2001) Interleukin-3 stimulates migration and prolif-
eration of vascular smooth muscle cells—a potential role in atherogenesis. Circu-
lation 103:549–554.

Brizzi MF, Garbarino G, Rossi PR, Pagliardi GL, Arduino C, Avanzi GC, and
Pegoraro L (1993) Interleukin 3 stimulates proliferation and triggers endothelial-
leukocyte adhesion molecule 1 gene activation of human endothelial cells. J Clin
Investig 91:2887–2892.

Brown AS, Bakker-Arkema RG, Yellen L, Henley RW, Guthrie R, Campbell CF,
Koren M, Woo W, McLain R, and Black DM (1998) Treating patients with docu-
mented atherosclerosis to National Cholesterol Education Program-recommended
low-density-lipoprotein cholesterol goals with atorvastatin, fluvastatin, lovastatin
and simvastatin. J Am Coll Cardiol 32:665–672.

Bump NJ, Hackett M, Hugunin M, Seshagiri S, Brady K, Chen P, Ferenz C, Franklin
S, Ghayur T, Li P, et al. (1995) Inhibition of ICE family proteases by baculovirus
antiapoptotic protein p35. Science (Wash DC) 269:1885–1888.

Burch RM and Mahan LC (1991) Oligonucleotides antisense to the interleukin 1
receptor mRNA block the effects of interleukin 1 in cultured murine and human
fibroblasts and in mice. J Clin Investig 88:1190–1196.

Calderara S, Xiang Y, and Moss B (2001) Orthopoxvirus IL-18 binding proteins:
Affinities and antagonist activities. Virology 279:22–26.

Cao X, Shores EW, Hu Li J, Anver MR, Kelsall BL, Russell SM, Drago J, Noguchi M,
Grinberg A, and Bloom ET (1995) Defective lymphoid development in mice lacking
expression of the common cytokine receptor gamma chain. Immunity 2:223–238.

Carson WE, Giri JG, Lindemann MJ, Linett ML, Ahdieh M, Paxton R, Anderson D,
Eisenmann J, Grabstein K, and Caligiuri MA (1994) Interleukin (IL) 15 is a novel
cytokine that activates human natural killer cells via components of the IL-2
receptor. J Exp Med 180:1395–1403.

Cassatella MA, Gasperini S, Bovolenta C, Calzetti F, Vollebregt M, Scapini P,
Marchi M, Suzuki R, Suzuki A, and Yoshimura A (1999) Interleukin-10 (IL-10)
selectively enhances CIS3/SOCS3 mRNA expression in human neutrophils: evi-
dence for an IL-10-induced pathway that is independent of STAT protein activa-
tion. Blood 94:2880–2889.

Cassatella MA, Meda L, Bonora S, Ceska M, and Constantin G (1993) Interleukin 10
(IL-10) inhibits the release of proinflammatory cytokines from human polymor-
phonuclear leukocytes. Evidence for an autocrine role of tumor necrosis factor and
IL-1 beta in mediating the production of IL-8 triggered by lipopolysaccharide. J
Exp Med 178:2207–2211.

Center DM and Cruikshank W (1982) Modulation of lymphocyte migration by hu-
man lymphokines. I. Identification and characterization of chemoattractant activ-
ity for lymphocytes from mitogen-stimulated mononuclear cells. J Immunol 128:
2563–2568.

Chomarat P, Banchereau J, Davoust J, and Palucka AK (2000) IL-6 switches the
differentiation of monocytes from dendritic cells to macrophages. Nat Immunol
1:510–514.

Choudhury RP, Fuster V, Badimon JJ, Fisher EA, and Fayad ZA (2002) MRI and
characterization of atherosclerotic plaque: emerging applications and molecular
imaging. Arterioscler Thromb Vasc Biol 22:1065–1074.

INTERLEUKINS IN ATHEROSCLEROSIS 157

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


Chu RS, Targoni OS, Krieg AM, Lehmann PV, and Harding CV (1997) CpG oligode-
oxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J Exp
Med 186:1623–1631.

Chua AO, Chizzonite R, Desai BB, Truitt TP, Nunes P, Minetti LJ, Warrier RR,
Presky DH, Levine JF, Gately MK, and Gubler U (1994) Expression cloning of a
human IL-12 receptor component. A new member of the cytokine receptor super-
family with strong homology to gp130. J Immunol 153:128–136.

Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, and Shuai K (1997) Specific
inhibition of Stat3 signal transduction by PIAS3. Science (Wash DC) 278:1803–
1805.

Ciapponi L, Maione D, Scoumanne A, Costa P, Hansen MB, Svenson M, Bendtzen K,
Alonzi T, Paonessa G, Cortese R, et al. (1997) Induction of interleukin-6 (IL-6)
autoantibodies through vaccination with an engineered IL-6 receptor antagonist.
Nat Biotechnol 15:997–1001.

Clerk A and Sugden PH (1998) The p38-MAPK inhibitor, SB203580, inhibits cardiac
stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs). FEBS
Lett 426:93–96.

Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, and Libby P (1992)
Macrophage colony-stimulating factor gene expression in vascular cells and in
experimental and human atherosclerosis. Am J Pathol 140:301–316.

Cobb RR, Felts KA, Parry GC, and Mackman N (1996) Proteasome inhibitors block
VCAM-1 and ICAM-1 gene expression in endothelial cells without affecting nu-
clear translocation of nuclear factor-kappa B. Eur J Immunol 26:839–845.

Cochran FR and Finch-Arietta MB (1992) Interleukin-6 can prime THP-1 macro-
phages for enhanced production of tumor necrosis factor-alpha in response to LPS.
Immunopharmacology 23:97–103.

Collins T (1993) Endothelial nuclear factor-kappa B and the initiation of the athero-
sclerotic lesion. Lab Investig 68:499–508.

Collins T and Cybulsky MI (2001) NF-kappa B: pivotal mediator or innocent by-
stander in atherogenesis? J Clin Investig 107:255–264.

Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, and Maniatis T (1995)
Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and
cytokine-inducible enhancers. FASEB J 9:899–909.

Colombel JF, Rutgeerts P, Malchow H, Jacyna M, Nielsen OH, Rask-Madsen J, Van
Deventer S, Ferguson A, Desreumaux P, Forbes A, et al. (2001) Interleukin 10
(Tenovil) in the prevention of postoperative recurrence of Crohn’s disease. Gut
49:42–46.

Colotta F, Bussolino F, Polentarutti N, Guglielmetti A, Sironi M, Bocchietto E, De
Rossi M, and Mantovani A (1993a) Differential expression of the common beta and
specific alpha chains of the receptors for GM-CSF, IL-3 and IL-5 in endothelial
cells. Exp Cell Res 206:311–317.

Colotta F, Re F, Muzio M, Bertini R, Polentarutti N, Sironi M, Giri JG, Dower SK,
Sims JE, and Mantovani A (1993b) Interleukin-1 type II, receptor: a decoy target
for IL-1 that is regulated by IL-4. Science (Wash DC) 261:472–475.

Colotta F, Re F, Muzio M, Polentarutti N, Minty A, Caput D, Ferrara P, and
Mantovani A (1994) Interleukin-13 induces expression and release of interleukin-1
decoy receptor in human polymorphonuclear cells. J Biol Chem 269:12403–12406.

Cornicelli JA, Butteiger D, Rateri DL, Welch K, and Daugherty A (2000) Interleu-
kin-4 augments acetylated LDL-induced cholesterol esterification in macrophages.
J Lipid Res 41:376–383.

Crooke ST (2000) Oligonucleotide-based drugs in the control of cytokine synthesis, in
Novel Cytokine Inhibitors (Higgs GA and Henderson B eds) pp 83–101, Birkhäuser
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